Startseite Conformal vector fields on almost co-Kähler manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conformal vector fields on almost co-Kähler manifolds

  • Uday Chand De , Young Jin Suh und Sudhakar K. Chaubey EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we characterize almost co-Kähler manifolds with a conformal vector field. It is proven that if an almost co-Kähler manifold has a conformal vector field that is collinear with the Reeb vector field, then the manifold is a K-almost co-Kähler manifold. It is also shown that if a (κ, μ)-almost co-Kähler manifold admits a Killing vector field V, then either the manifold is K-almost co-Kähler or the vector field V is an infinitesimal strict contact transformation, provided that the (1,1) tensor h remains invariant under the Killing vector field.


The second author was supported by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea. The third author acknowledges authority of University of Technology and Applied Sciences-Shinas for their continuous support and encouragement to carry out this research work


Acknowledgement

The authors express their sincere thanks to the Editor and anonymous referees for providing their valuable suggestions in the improvement of the paper.

  1. (Communicated by Július Korbaš )

References

[1] Ayar, G.—Chaubey, S. K.: M-projective curvature tensor over cosymplectic manifolds, Differ. Geom. Dyn. Syst. 21 (2019), 23–33.Suche in Google Scholar

[2] Balkan, Y. S.—Uddin, S.—Alkhaldi, A. H.: A class of ϕ-recurrent almost cosymplectic space, Honam Math. J. 40 (2018), 293–304.Suche in Google Scholar

[3] Blair, D. E.: Contact Manifold in Riemannian Geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.10.1007/BFb0079307Suche in Google Scholar

[4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progr. Math. 203, Birkhauser, Basel, 2002.10.1007/978-1-4757-3604-5Suche in Google Scholar

[5] Blair, D. E.: The theory of quasi-Sasakian structures, J. Diff. Geom. 1 (1967), 331–345.10.4310/jdg/1214428097Suche in Google Scholar

[6] Cappelletti-Montano, B.—Nicola, A. D.—Yudin, I.: A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), 1343002.10.1142/S0129055X13430022Suche in Google Scholar

[7] Carriazo, A.—Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu (κ, μ, ν)-spaces, Mediterr. J. Math. 10 (2013), 1551–1571.10.1007/s00009-013-0246-4Suche in Google Scholar

[8] Chinea, D.—Leon, D. M.—Marrero, J. C.: Topology of cosymplectic manifolds, J. Math. Pures Appl. 72 (1993), 567–591.Suche in Google Scholar

[9] Cho, J. T.: Reeb flow symmetry on almost cosymplectic three-manifold, Bull. Korean Math. Soc. 53 (2016), 1249–1257.10.4134/BKMS.b150656Suche in Google Scholar

[10] Dacko, P.—Olszak, Z.: On almost cosymplectic (κ, μ, ν)-space. Banach Center Publ. 69, 2005, pp. 211–220.10.4064/bc69-0-17Suche in Google Scholar

[11] Dacko, P.—Olszak, Z.: On conformally flat almost cosymplectic manifold with Kählerian leaves, Rend. Semin. Mat. Univ. Politec. Torino 56 (1998), 89–103.Suche in Google Scholar

[12] Dacko, P.: On almost cosymplectic manifolds with the structure vector ξ belonging to the κ-nullity distribution, Balkan J. Geom. Appl. 5 (2000), 47–60.Suche in Google Scholar

[13] De, U. C.—Chaubey, S. K.—Suh, Y. J.: A note on almost co-Kähler manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050153.10.1142/S0219887820501534Suche in Google Scholar

[14] De, U. C.—Chaubey, S. K.—Suh, Y. J.: Gradient Yamabe and gradient m-quasi Einstein metrics on three-dimensional cosymplectic manifolds, Mediterr. J. Math. 18(3) (2021), Art. No. 80.10.1007/s00009-021-01720-wSuche in Google Scholar

[15] Deshmukh, S.: Conformal vector fields and Eigenvectors of Laplace operator, Math. Phys. Anal. Geom. 15 (2012), 163–172.10.1007/s11040-012-9106-xSuche in Google Scholar

[16] Deshmukh, S.: Characterizing spheres by conformal vector fields, Ann. Univ. Ferrara Sez. VII Sci. Mat. 56 (2010), 231–236.10.1007/s11565-010-0101-5Suche in Google Scholar

[17] Deshmukh, S.: Conformal vector fields on Kähler manifolds, Ann. Univ. Ferrara Sez. VII Sci. Mat. 57 (2011), 17–26.10.1007/s11565-011-0114-8Suche in Google Scholar

[18] Deshmukh, S.—Alsolamy, F.: Gradient conformal vector fields on a compact Riemannian manifold, Colloq. Math. 112 (2008), 157–161.10.4064/cm112-1-8Suche in Google Scholar

[19] Deshmukh, S.—Alsolamy, F.: A note on conformal vector fields on a Riemannian manifold, Colloq. Math. 136 (2014), 65–73.10.4064/cm136-1-7Suche in Google Scholar

[20] Deshmukh, S.—Alsolamy, F.: Conformal vector fields on a Riemannian manifold, Balkan J. Geom. Appl. 19 (2014), 86–93.10.4064/cm136-1-7Suche in Google Scholar

[21] Deshmukh, S.—Alsolamy, F.: Conformal vector fields and conformal transformation on a Riemannian manifold, Balkan J. Geom. Appl. 17 (2012), 9–16.Suche in Google Scholar

[22] Deshmukh, S.: Geometry of conformal vector fields, Arab. J. Math. Sci. 23 (2017), 44–73.10.1016/j.ajmsc.2016.09.003Suche in Google Scholar

[23] Endo, H.: Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N. S.) 63 (2002), 272–284.Suche in Google Scholar

[24] Erken, I. K.—Murathan, C.: A class of 3-dimensional almost cosymplectic manifolds, Turk. J. Math. 37 (2013), 884–894.10.3906/mat-1201-35Suche in Google Scholar

[25] Goldberg, S. I.—Yano, K.: Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373–382.10.2140/pjm.1969.31.373Suche in Google Scholar

[26] Li, H.: Topology of cosymplectic/co-Kähler manifolds, Asian J. Math. 12 (2008), 527–544.10.4310/AJM.2008.v12.n4.a7Suche in Google Scholar

[27] Marrero, J. C.—Pardon, E.: New examples of compact cosymplectic solvmanifolds, Arch. Math. (Brno) 34 (1998), 337–345.Suche in Google Scholar

[28] Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.10.2969/jmsj/01430333Suche in Google Scholar

[29] Obata, M.: Riemannian manifolds admitting a solution of a certain system of differential equations. In: Proc. United States-Japan Seminar in Differential Geometry, Kyoto, 1965, pp. 101–114.Suche in Google Scholar

[30] Obata, M.: Conformal transformations of Riemannian manifolds, J. Diff. Geom. 4 (1970), 311–333.10.4310/jdg/1214429505Suche in Google Scholar

[31] Olszak, Z.: On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239–250.10.2996/kmj/1138036371Suche in Google Scholar

[32] Olszak, Z.: On almost cosymplectic manifolds with Kählerian leaves, Tensor(N. S.) 46 (1987), 117–124.Suche in Google Scholar

[33] Olszak, Z.: Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), 73–87.10.4064/cm-57-1-73-87Suche in Google Scholar

[34] Ozturk, H.—Aktan, H. N.—Murathan, C.: Almost α-cosymplectic (κ, μ, ν)-spaces, (2010), https://arxiv.org/abs/1007.0527v1.Suche in Google Scholar

[35] Perrone, D.: Classification of homogeneous almost cosymplectic three-manifolds, Diff. Geom. Appl. 30 (2012), 49–58.10.1016/j.difgeo.2011.10.003Suche in Google Scholar

[36] Perrone, D.: Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), 258–274.10.2996/kmj/1372337517Suche in Google Scholar

[37] Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J. 12 (1960), 459–467.10.2748/tmj/1178244407Suche in Google Scholar

[38] Sharma, R.: Conformal and projective characterizations of an odd dimensional unit sphere, Kodai Math. J. 42 (2019), 160–169.10.2996/kmj/1552982511Suche in Google Scholar

[39] Sharma, R.—Blair, D. E.: Conformal motion of contact manifolds with characteristic vector field in the κ-nullity distribution, Illinois J. Math. 40 (1996), 553–563.10.1215/ijm/1255985936Suche in Google Scholar

[40] Sharma, R.—Vrancken, L.: Conformal classification of (κ, μ)-contact manifolds, Kodai Math. J. 33 (2010), 267–282.10.2996/kmj/1278076342Suche in Google Scholar

[41] Sharma, R.: Addendum to our paper “Conformal motion of contact manifolds with characteristic vector field in the κ-nullity distribution”, Illinois J. Math. 42 (1998), 673–677.10.1215/ijm/1255985467Suche in Google Scholar

[42] Suh, Y. J.—De, U. C.: Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), 653–661.10.4153/S0008439518000693Suche in Google Scholar

[43] Tanno, S.: Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416–430.10.2748/tmj/1178244078Suche in Google Scholar

[44] Wang, W.—Liu, X.: Three-dimensional almost co-Kähler manifolds with harmonic Reeb vector fields, Rev. Un. Mat. Argentina 58 (2017), 307–317.Suche in Google Scholar

[45] Wang, Y.: Almost co-Kähler manifolds satisfying some symmetry conditions, Turk. J. Math. 40 (2016), 740–752.10.3906/mat-1504-73Suche in Google Scholar

[46] Wang, Y.: A generalization of Goldberg conjecture for co-Kähler manifolds, Mediterr. J. Math. 13 (2016), 2679–2690.10.1007/s00009-015-0646-8Suche in Google Scholar

[47] Wang, Y.: Ricci tensors on three-dimensional almost co-Kähler manifolds, Kodai Math. J. 39 (2016), 469–483.10.2996/kmj/1478073764Suche in Google Scholar

[48] Wang, Y.: Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), 912–922.10.4153/S0008439518000632Suche in Google Scholar

[49] Wang, Y.: Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca 67 (2017), 979–984.10.1515/ms-2017-0026Suche in Google Scholar

[50] Yano, K.: Integral Formulas in Riemannian Geometry. Pure Appl. Math., I, Marcel Dekker, New York, 1970.Suche in Google Scholar

[51] Yano, K.—Nagano, T.: Einstein spaces admitting a one-parameter group of conformal transformations, Ann. Math. 69 (1959), 451–461.10.1016/S0304-0208(08)72248-5Suche in Google Scholar

Received: 2020-05-11
Accepted: 2021-01-23
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0070/pdf?lang=de
Button zum nach oben scrollen