Startseite The form of locally defined operators in waterman spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The form of locally defined operators in waterman spaces

  • Małgorzata Wróbel
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A representation formula for locally defined operators acting between Banach spaces of continuous functions of bounded variation in the Waterman sense is presented. Moreover, the Nemytskij composition operators will be investigated and some consequences for locally bounded as well as uniformly bounded local operators will be given.

MSC 2010: Primary 47H30

Acknowledgement

I would like to thank the reviewers for helpful comments and suggestions.

  1. Communicated by Tomasz Natkaniec

References

[1] Appell, J.—Banaś, J.—Merentes, N.: Bounded Variation and Around. De Gruyter Ser. Nonlinear Anal. Appl. 17, Walter de Gruyter, Berlin/Boston, 2014.10.1515/9783110265118Suche in Google Scholar

[2] Bugajewski, D.—Czudek, K.—Gulgowski, J.—Sadowski, J.: On some nonlinear operators in ΛBV-spaces, J. Fixed Point Theory Appl. 19 (2017), 2785–2818.10.1007/s11784-017-0450-0Suche in Google Scholar

[3] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa-Kraków-Katowice, 1985.Suche in Google Scholar

[4] Lichawski, K.—Matkowski, J.—Miś, J.: Locally defined operators in the space of differentiable functions, Bull. Pol. Acad. Sci. Math. 37 (1989), 315–325.Suche in Google Scholar

[5] Maligranda, L.—Orlicz, W.: On some properties of functions of generalized variation, Monatsh. Math. 104 (1987), 53–65.10.1007/BF01540525Suche in Google Scholar

[6] Matkowski, J.: Uniformly bounded composition operators between general Lipschitz functions normed spaces, Topol. Methods Nonlinear Anal. 38(2) (2011), 395–406.Suche in Google Scholar

[7] Matkowski, J.—Miś, J.: On a characterization of Lipschitzian operators of substitution in the space BV[a,b], Math. Nachr. 117 (1984), 155–159.10.1002/mana.3211170111Suche in Google Scholar

[8] Matkowski, J.—Wróbel, M.: Locally defined operators in the space of Whitney differentiable functions, Nonlinear Anal. TMA 68 (2008), 2873–3232.10.1016/j.na.2007.02.037Suche in Google Scholar

[9] Perlman, S. J.—Waterman, D.: Some remarks on functions of Λ-bounded variation, Proc. Amer. Math. Soc. 74 (1979), 113–118.10.1090/S0002-9939-1979-0521883-XSuche in Google Scholar

[10] Waterman, D.: On convergence of Fourier series of functions of generalized bounded variation, Studia Math. 44(2) (1972), 107–117.10.4064/sm-44-2-107-117Suche in Google Scholar

[11] Waterman, D.: On Λ-bounded variation, Studia Math. 57(1) (1976), 33–45.10.4064/sm-57-1-33-45Suche in Google Scholar

[12] Wróbel, M.: Representation theorem for local operators in the space of continuous and monotone functions, J. Math. Anal. Appl. 372 (2010), 45–54.10.1016/j.jmaa.2010.06.013Suche in Google Scholar

[13] Wróbel, M.: Locally defined operators in the space of functions of bounded φ-variation, Real Anal. Exchange 38(1) (2013), 79–92.10.14321/realanalexch.38.1.0079Suche in Google Scholar

[14] Wróbel, M.: Locally defined operators in the space of Ck,ω-functions, Math. Slovaca 70(3) (2020), 745–752.10.1515/ms-2017-0387Suche in Google Scholar

[15] Zabrejko, P. P.: Nonlinear Superposition Operators, Cambridge University Press, Cambridge-Port Chester-Melbourne-Sydney, 1990.10.1017/CBO9780511897450Suche in Google Scholar

Received: 2020-12-22
Accepted: 2021-03-05
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0069/html?lang=de
Button zum nach oben scrollen