Home On rapidly oscillating solutions of a nonlinear elliptic equation
Article
Licensed
Unlicensed Requires Authentication

On rapidly oscillating solutions of a nonlinear elliptic equation

  • Houssem Eddine Kadem and Saida Bendaas EMAIL logo
Published/Copyright: December 10, 2021
Become an author with De Gruyter Brill

Abstract

The aim of this article is to examine the solutions of the boundary value problem of the nonlinear elliptic equation ε2u = f(u). We describe the asymptotic behavior as ε tends to zero of the solutions on a spherical crown C of RN, (N ≥ 2) in a direct non-classical formulation which suggests easy proofs. We propose to look for interesting solutions in the case where the condition at the edge of the crown is a constant function. Our results are formulated in classical mathematics.Their proofs use the stroboscopic method which is a tool of the nonstandard asymptotic theory of differential equations.

  1. Communicated by Alberto Lastra

References

[1] Bendaas, S.—Alaa, N.: Periodic wave shock solutions of Burgers equations, A new approach, Int. J. Nonlinear Anal. Appl. 10(1) (2019), 119–129.10.1080/25742558.2018.1463597Search in Google Scholar

[2] Bendaas, S.: Confluence of shocks in Burgers equation. A new approach, Int. J. Differ. Equ. 14(N4) (2015), 369–382.Search in Google Scholar

[3] Bendaas, S.: Boundary value problems for Burgers equations through nonstandard analysis, Appl. Math. N6 (2015), 1086–1098.10.4236/am.2015.66099Search in Google Scholar

[4] Bendaas, S.: Léquation de Burgers avec un terme dissipatif. Une approche non standard, An. Univ. Oradea Fasc. Mat. 15 (2008), 239–252.Search in Google Scholar

[5] Bendaas, S.: Quelques Applications de l’A.N.S aux E.D.P, Thèse de Doctorat. Université de Haute Alsace, France, 1994.Search in Google Scholar

[6] Callot, J. L.: Stroboscopie infinitésimale, (Strasbourg-Obernai, 1995), 95–124. Prépubl. Inst. Rech. Math. Av., 1995/13, Univ.Louis Pasteur, Strasbourg, 1995.Search in Google Scholar

[7] Callot, J. L.—Sari, T.: Stroboscopie infinitésimale et moyennisation dans les systèmes déquations différentielles à solutions rapidement oscillantes. In: Outils et modèles mathématiques pour l’automatique, l’analyse des systèmes et le traitement du signal (I. D. Landau, ed.), vol. 3, Editions du CNRS, 1983, pp. 345–353.Search in Google Scholar

[8] Carrier, G. F.—Pearson, C. E.: Ordinary Differential Equations, Blaisdell Waltham, 1968.Search in Google Scholar

[9] De Jager, E. M.: Singular Perturbations Problems for linear Differential Equations of Elliptic Type, Arch. Rat. Mech. Anal. 23 (1966).10.1007/BF00281135Search in Google Scholar

[10] Diener, M.—Lobry, C.: Actes de l’Ecole d’Eté: Analyse Non Standard et Représentation du Réel, Proceeding of the Summer School on Nonstandard Analysis and Representation of the Real, Office des Publications Universitaires, Alger, 1985.Search in Google Scholar

[11] Diener, M.—Lobry, C.: Nonstandard Analysis in Practice, Chapters 4 and 10, Universitext, Springer Verlag, 1995.10.1007/978-3-642-57758-1Search in Google Scholar

[12] Fife, P. C.—Greenlee, W. M.: Interior Transition Layers for Elliptic Boundary Value Problems with a Small parameter, Russian Math. Surveys 29(4) (1974), 130.10.1070/RM1974v029n04ABEH001291Search in Google Scholar

[13] Lakrib, M.—Sari, T.: Time averaging for ordinary differental equations and retard functional differential equations, Electron. J. Differential Equations 2010(40) (2010), http://ejde.math.txstate.edu or http://ejde.math.unt.edu.Search in Google Scholar

[14] Lutz, R.—Sari, T.: Application of Non Standard Analysis to Boundary Value Problems in Singular Perturbations Theory, Proceeding Oberwolfach 1981, edited by W. Eckhaus and E. M. Dejager, Lectures Notes in Math. 942, Springer Verlag Berlin, 1982, pp. 113–135.10.1007/BFb0094743Search in Google Scholar

[15] Lutz, R.—Goze, M.: Nonstandard Analysis: A Practical Guide with Applications, Lecture Notes in Math. 881, Springer-Verlag, Berlin, 1981.10.1007/BFb0093397Search in Google Scholar

[16] Malley, R. E. O.: Phase-plane solutions to some singular perturbation problem, J. Math. Anal. Appl. 54 (1976), 449–466.10.1016/0022-247X(76)90214-6Search in Google Scholar

[17] Nelson, E.: Internal Set Theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83(6) (1977), 1165–1198.10.1090/S0002-9904-1977-14398-XSearch in Google Scholar

[18] Nouri, Z.—Bendaas, S.—Kadem, H. E.: N wave and periodic wave solutions for Burgers equations, Int. J. Anal. Appl. 18(2) (2020), 304–318.Search in Google Scholar

[19] Reeb, G.: Equations Différentielles et Analyse Non Standard, Proceeding of the IV-Int Colloque on Differential Geometry, Santiago de Compostella, 1978.Search in Google Scholar

[20] Robinson, A.: Nonstandard Analysis, American Elsevier, New York, 1974.Search in Google Scholar

[21] Sari, T.: Moyennisation Dans les Systè mes Différentiels à Solutions Rapidement Oscillantes, Thèse de Doctorat, Mulhouse, 1983.Search in Google Scholar

[22] Sari, T.: Nonstandard perturbation theory of differential equations, presented as an invited talk at the International Research Symposium on Nonstandard Analysis and Its Applications, ICMS, Edinburgh 1996, http://www.math.uha.fr/sari/papers/icms1996.pdf.Search in Google Scholar

[23] van den Berg, I. P.: Nonstandard Asymptotic Analysis. Lecture Notes in Math. 1249, Springer-Verlag, Berlin, 1987.10.1007/BFb0077577Search in Google Scholar

Received: 2020-06-17
Accepted: 2021-02-02
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 26.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0062/pdf
Scroll to top button