Startseite Mathematik Dynamical behavior of a P-dimensional system of nonlinear difference equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamical behavior of a P-dimensional system of nonlinear difference equations

  • Yacine Halim EMAIL logo , Asma Allam und Zineb Bengueraichi
Veröffentlicht/Copyright: 4. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the periodicity, the boundedness of the solutions, and the global asymptotic stability of the positive equilibrium of the system of p nonlinear difference equations

xn+1(1)=A+xn1(1)xn(p),xn+1(2)=A+xn1(2)xn(p),,xn+1(p1)=A+xn1(p1)xn(p),xn+1(p)=A+xn1(p)xn(p1)

where n ∈ ℕ0, p ≥ 3 is an integer, A ∈ (0, +∞) and the initial conditions x1(j), x0(j), j = 1, 2, …, p are positive numbers.


This work was supported by Directorate General for Scientific Research and Technological Development (DGRSDT), Algeria.


  1. (Communicated by Michal Fečkan)

References

[1] Akrour, Y.—Touafek, N.—Halim, Y.: On a system of difference equations of second order solved in closed form, Miskolc Math. Notes 20 (2019), 701–717.10.18514/MMN.2019.2923Suche in Google Scholar

[2] Amleh, A. M.—Grove, E. A.—Ladas—Georgiou, D. A.: On the recursive sequencexn+1=A+xn1xn, J. Math. Anal. Appl. 233 (1999), 790–798.10.1006/jmaa.1999.6346Suche in Google Scholar

[3] Elaydi, S.: An Introduction to Difference Equations, Springer-Verlag New York, 1995.10.1007/978-1-4757-9168-6Suche in Google Scholar

[4] Belhannache, F.—Touafek, N.—Abo-Zeid, R.: Dynamics of a third-order rational difference equation, Bull. Math. Soc. Sci. Math. Roum. Nouv. Ser. 107 (2016), 13–22.Suche in Google Scholar

[5] Elsayed, E. M.: On a system of two nonlinear difference equations of order two, Proceedings Jagiellonian Mathematics Society 18 (2015), 353–369.Suche in Google Scholar

[6] Elsayed, E. M.: Solutions of rational difference systems of order two, Math. Comput. Modelling 55 (2012), 378–384.10.1016/j.mcm.2011.08.012Suche in Google Scholar

[7] Elsayed, E. M.—Ibrahim, T. F.: Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat. 44 (2015), 1361–1390.10.15672/HJMS.2015449653Suche in Google Scholar

[8] Elsayed, E. M.: Solution for systems of difference equations of rational form of order two, Comp. Appl. Math. 33 (2014), 751–765.10.1007/s40314-013-0092-9Suche in Google Scholar

[9] Elsayed, E. M.—El-Dessoky, M. M.: Dynamics and global behavior for a fourth-order rational difference equation, Hacet. J. Math. Stat. 33 (2014), 751–765.Suche in Google Scholar

[10] Elsayed, E. M.: Expression and behavior of the solutions of some rational recursive sequences, Math. Methods Appl. Sci. 39(18) (2016), 5682–5694.10.1002/mma.3953Suche in Google Scholar

[11] Grove, E. A.—Ladas, G.: Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC Press, Boca Raton, FL, 2004.10.1201/9781420037722Suche in Google Scholar

[12] Gumus, M.: The global asymptotic stability of a system of difference equations J. Difference Equ. Appl. 24 (2018), 976–991.10.1080/10236198.2018.1443445Suche in Google Scholar

[13] Gumus, M.: Analysis of periodicity for a new class of non-linear difference equations by using a new method, Electron. J. Math. Anal. Appl. 8 (2020), 109–116.Suche in Google Scholar

[14] Gumus, M.: The periodic character in a higher order difference equation with delays, Math. Methods Appl. Sci. 43(2) (2020), 1112–1123.10.1002/mma.5915Suche in Google Scholar

[15] Halim, Y.: Global character of systems of rational difference equations, Electron. J. Math. Anal. Appl. 3 (2015), 204–214.Suche in Google Scholar

[16] Halim, Y.: Form and periodicity of solutions of some systems of higher-order difference equations, Math. Sci. Lett. 5 (2016), 79–84.10.18576/msl/050111Suche in Google Scholar

[17] Halim, Y.: A system of difference equations with solutions associated to Fibonacci numbers, Int. J. Difference. Equ. 11 (2016), 65–77.Suche in Google Scholar

[18] Halim, Y.—Touafek, N.—Yazlik, Y.: Dynamic behavior of a second-order nonlinear rational difference equation, Turk. J. Math. 39 (2015), 1004–1018.10.3906/mat-1503-80Suche in Google Scholar

[19] Halim, Y.—Bayram, M.: On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods. Appl. Sci. 39 (2016), 2974–2982.10.1002/mma.3745Suche in Google Scholar

[20] Halim, Y.—Rabago, J. F. T.: On some solvable systems of difference equations with solutions associated to Fibonacci numbers, Electron. J. Math. Anal. Appl. 5 (2017), 166–178.Suche in Google Scholar

[21] Halim, Y.—Rabago, J. F. T.: On the solutions of a second-order difference equations in terms of generalized Padovan sequences, Math. Slovaca 68 (2018), 625–638.10.1515/ms-2017-0130Suche in Google Scholar

[22] Kara, M.—Yazlik, Y.: Solvability of a system of nonlinear difference equations of higher order, Turk. J. Math. 43(3) (2019), 1533–1565.10.3906/mat-1902-24Suche in Google Scholar

[23] Khelifa, A.—Halim, Y.—Berkal, M.: Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univers. J. Math. Appl. 2(4) (2019), 202–211.10.32323/ujma.610399Suche in Google Scholar

[24] Kocic, V. L.—Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Chapman & Hall, London, 1993.10.1007/978-94-017-1703-8Suche in Google Scholar

[25] Kruse, N.—Nasemann, T.: Global asymptotic stability in some discrete dynamical systems, J. Math. Anal. Appl. 235 (2019), 151–158.10.1006/jmaa.1999.6384Suche in Google Scholar

[26] Okumus, I.—Soykan, Y.: Dynamical behavior of a system three-dimensional nonlinear difference equations, Adv. Difference Equ. 233 (2018), 15 pp.10.1186/s13662-018-1667-ySuche in Google Scholar

[27] Papaschinapoulos, G.—Schinas, C. J.: On the system of two nonlinear difference equationsxn+1=A+xn1yn,yn+1=A+yn1xn, Int. J. Math. Math. Sci. 23(12) (2000), 839–848.10.1155/S0161171200003227Suche in Google Scholar

[28] Papaschinapoulos, G.—Schinas, C. J.: Oscillation and asymptotic stability of two systems of difference equations of rational form, J. Differ. Equ. Appl. 7 (2001), 601–617.10.1080/10236190108808290Suche in Google Scholar

[29] Pituk, M.: More on Poincare's and Perron's theorems for difference equations, J. Differ. Equ. Appl. 8 (2002), 201–216.10.1080/10236190211954Suche in Google Scholar

[30] Stevic, S.: More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), 80–85.Suche in Google Scholar

[31] Stevic, S.: Bounded and periodic solutions to the linear first-order difference equation on the integer domain, Adv. Difference Equ. 283 (2017), 17 pp.10.1186/s13662-017-1350-8Suche in Google Scholar

[32] Stevic, S.: Asymptotic behaviour of second-order difference equations, ANZIAM J. 46 (2004), 157–170.10.1017/S1446181100013742Suche in Google Scholar

[33] Touafek, N.: On some fractional systems of difference equations, Iran. J. Math. Sci. Inform. 9 (2014), 303–305.Suche in Google Scholar

[34] Touafek, N.: On a second order rational difference equation, Hacet. J. Math. Stat. 41 (2012), 867–874.Suche in Google Scholar

[35] Touafek, N.—Elsayed, E. M.: On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roumanie 55(2) (2012), 217–224.Suche in Google Scholar

[36] Tollu, D. T.—Yazlik, Y.—Taskara, N.: Behavior of positive solutions of a difference equation, J. Comput. Anal. Appl. 35 (2017), 217–230.10.14317/jami.2017.217Suche in Google Scholar

[37] Yazlik, Y.—Tollu, D. T.—Taskara, N.: On the behaviour of solutions for some systems of difference equations, J. Comput. Anal. Appl. 18 (2015), 166–178.Suche in Google Scholar

[38] Yazlik, Y.—Tollu, D. T.—Taskara, N.: On the solutions of difference equation systems with Padovan numbers, Appl. Math. 12 (2013), 15–20.10.4236/am.2013.412A002Suche in Google Scholar

Received: 2020-04-14
Accepted: 2020-10-21
Published Online: 2021-08-04
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0030/pdf?lang=de
Button zum nach oben scrollen