Startseite Mathematik On the Oscillation of second order nonlinear neutral delay differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Oscillation of second order nonlinear neutral delay differential equations

  • R. A. Sallam , M. M. A. El-Sheikh und E. I. El-Saedy EMAIL logo
Veröffentlicht/Copyright: 1. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A class of second-order neutral delay differential equations is considered. New oscillation criteria are established to complement and improve some known results in the literature. Two examples are given to support our results.

MSC 2010: 34K11
  1. (Communicated by Jozef Džurina)

References

[1] Agarwal, R. P.—Sheikh, S. L.—Yeh, C.: Oscillation criteria for second order retated differential equations, Math. Comput. 26 (1997), 1–11.10.1016/S0895-7177(97)00141-6Suche in Google Scholar

[2] Atkinson, F.V.: On second order nonlinear oscillates, Pacific J. Math. 5 (1995), 643–647.10.2140/pjm.1955.5.643Suche in Google Scholar

[3] Baculíková, B.—Džurina, J.: Oscillation theorems for second order neutral differential equations, Comput. Math. Appl. 61 (2011), 94–99.10.1016/j.camwa.2010.10.035Suche in Google Scholar

[4] Bharadwaj, B. V. K.—Baruah, P. K.: Existence of a non-oscillating solution for a second order nonlinear ODE, Comput. Math. Appl. 6(2) (2015), 41–47.Suche in Google Scholar

[5] Bohner, M.—Li, T.: Oscillation of second-order P-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett. 37 (2014), 72–76.10.1016/j.aml.2014.05.012Suche in Google Scholar

[6] Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type, Quart. Appl. Math. 24 (1996), 215–224.10.1090/qam/204800Suche in Google Scholar

[7] Chern, J. L.—LIAN, W. C.—YEH, C. C.: Oscillation criteria for second order half-linear differential equations with functional arguments, Publ. Math. Debrecen 48(3–4) (1996), 209–216.10.5486/PMD.1996.1555Suche in Google Scholar

[8] Dubé, S. G.—Mingarell, A. B.: Note on a non-oscillation Theorem of Atkinson, Electron. J. Differential Equations 2004 (22) (2004), 1–6.Suche in Google Scholar

[9] Džurina, J.—Stavrolakis, I. P.: Oscillation criteria for second-order delay differential equations, Appl. Math. Comput. 140 (2003), 445–453.10.1016/S0096-3003(02)00243-6Suche in Google Scholar

[10] El-Sheikh, M. M. A.: Oscillation and nonoscillation criteria for second order nonlinear differential equations, J. Math. Anal. Appl. 179(1) (1993), 14–27.10.1006/jmaa.1993.1332Suche in Google Scholar

[11] El-Sheikh, M. M. A.—Sallam, R.—Elimy, D.: Oscillation criteria for second order nonlinear equations with damping, Adv. Differ. Equ. Control Process. 8(2) (2011), 127–142.Suche in Google Scholar

[12] El-Sheikh. M. M. A.—Sallam, R. A.—El-Saedy, E. I.: On the oscillatory behavior of solutions of second order nonlinear neutral delay differential equations, WSEAS Transactions on Mathematics 17 (2018), 51–57.Suche in Google Scholar

[13] Erbe, L.—Hassan, TS.—Peterson, A.: Oscillation criteria for nonlinear functional neutral dynamic equations on time scales, J. Difference Equ. Appl. 15 (2009), 1097–1116.10.1080/10236190902785199Suche in Google Scholar

[14] Guan, H-Y.—Yu, Y-H.: Oscillation of second order quasi-linear neutral delay differential equations, International Journal of Mathematics And its Applications 3 (2015), 17–24.Suche in Google Scholar

[15] Han, Z. H.—Li, T-X.—Sun, S. R.: Oscillation of second order quasilinear neutral delay differential equations, J. Appl. Math. Comput. 40 (2012), 143–152.10.1007/s12190-012-0562-zSuche in Google Scholar

[16] Kuang, Y.: Delay Differential Equations with Application in Population Dynamics, Academic Press, New York, 1993.Suche in Google Scholar

[17] Kusano, T.—Naito, Y.: Oscillation and nonoscillation criteria for second order quasilinear differential equation, Acta Math. Hungar. 6 (1997), 81–99.10.1007/BF02907054Suche in Google Scholar

[18] Li, Q.—Wang, R.—Chen, F.—Li, T.: Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients, Adv. Difference Equ. 2015 (2015), 1–7.10.1186/s13662-015-0377-ySuche in Google Scholar

[19] Li, T.—Han, Z.—Zhang, C.—Sun, S.: On the oscillation of second-order Emden-Fowler neutral differential, J. Appl. Math. Comput. 37 (2011), 601–610.10.1007/s12190-010-0453-0Suche in Google Scholar

[20] Li, T.—Rogovchenko, Y. V.: Oscillation of second-order neutral differential equations, Math. Nachr. 288 (2015), 1150–1162.10.1002/mana.201300029Suche in Google Scholar

[21] Li, W.: Classifications and existence of nonoscillatory solutions of second order nonlinear neutral differential equations, Ann. Polon. Math. 3 (1997), 283–302.10.4064/ap-65-3-283-302Suche in Google Scholar

[22] Li, W.: Interval oscillation of second-order half-linear functional differential equations, Appl. Math. Comput. 155 (2004), 451–468.10.1016/S0096-3003(03)00790-2Suche in Google Scholar

[23] Liu, H—Meng, F.—Liu, P.: Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation, Appl. Math. Comput. 219 (2012), 2739–2748.10.1016/j.amc.2012.08.106Suche in Google Scholar

[24] Mirzov, D. D.: On the oscillation of solutions of asystem of differential equations, Math. Zametki 23 (1978), 401–404.Suche in Google Scholar

[25] Manojlović, J. V.: Oscillation criteria for second-order half-linear differential equations, Math. Comput. Model. 30 (1999), 109–119.10.1016/S0895-7177(99)00151-XSuche in Google Scholar

[26] Shi, Y.—Han, Z.—Sun, Y.: Oscillation criteria for a generalized Emden-Fowler dynamic equation on time scales, Adv. Difference Equ. 3 (2016), 1–12.10.1186/s13662-015-0701-6Suche in Google Scholar

[27] Sun, Y. G.—Meng, F. W.: Note on the paper of Džurina and Staroulakis, Appl. Math. Comput. 174 (2006), 1634–1641.10.1016/j.amc.2005.07.008Suche in Google Scholar

[28] Tiryaki, A.: Oscillation criteria for a certain second-order nonlinear differential equations with deviating arguments, Anal. Appl. 252 (2000), 342–352.10.1006/jmaa.2000.7063Suche in Google Scholar

[29] Wang, Q.: Oscillation and asymptotic for second-order half-linear differential equations, Appl. Math. Comput. 122 (2001), 253–266.10.1016/S0096-3003(00)00056-4Suche in Google Scholar

[30] Wang, Q.—Yang, Y.: Interval criteria for oscillation of second-order half-linear differential equations, J. Math. Anal. Appl. 291 (2004), 224–236.10.1016/j.jmaa.2003.10.028Suche in Google Scholar

[31] Wang, R.—Li, Q.: Oscillation and asymptotic properties of a class of second-order Emden-Fowler neutral differential equations, SpringerPlus 5 (2016), Art. No. 1956.10.1186/s40064-016-3622-2Suche in Google Scholar

[32] Wu, Y.—Yu, Y.—Zhang, J.—Xiao, J.: Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type, J. Inequal. Appl. 2016 (2016), Art. No. 328.10.1186/s13660-016-1268-9Suche in Google Scholar

[33] Xu, R.—Meng, F.: Some new oscillation criteria for second-order half-linear differential equations, Appl. Math. Comput. 182 (2006), 797–803.10.1016/j.amc.2006.04.042Suche in Google Scholar

[34] Xu, R.—Meng, F.: Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 192 (2007), 216–222.10.1016/j.amc.2007.01.108Suche in Google Scholar

[35] Ye, L. H.—Xu, Z. T.: Oscillation criteria for second order quasilinear neutral delay differential equations, Appl. Math. Comput. 207 (2009), 388–396.10.1016/j.amc.2008.10.051Suche in Google Scholar

[36] Yang, X.: Nonoscillation criteria for second-order nonlinear differential equations, App. Math. Comput. 131 (2002), 125–131.10.1016/S0096-3003(01)00132-1Suche in Google Scholar

[37] Yang, Q.—Yang, L.—Zhu, S.: Interval criteria for oscillation of second order nonlinear neutral differential equations, Comput. Math. Appl. 46 (2006), 903–918.10.1016/S0898-1221(03)90152-0Suche in Google Scholar

Received: 2020-01-19
Accepted: 2021-07-10
Published Online: 2021-08-01
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0026/pdf
Button zum nach oben scrollen