Startseite Mathematik P-Adic metric preserving functions and their analogues
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

P-Adic metric preserving functions and their analogues

  • Robert W. Vallin und Oleksiy A. Dovgoshey EMAIL logo
Veröffentlicht/Copyright: 14. April 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The p-adic completion ℚp of the rational numbers induces a different absolute value |⋅|p than the typical | ⋅| we have on the real numbers. In this paper we compare and contrast functions f : ℝ+ → ℝ+, for which the composition with the p-adic metric dp generated by |⋅|p is still a metric on ℚp, with the usual metric preserving functions and the functions that preserve the Euclidean metric on ℝ. In particular, it is shown that fdp is still an ultrametric on ℚp if and only if there is a function g such that fdp = gdp and gd is still an ultrametric for every ultrametric d. Some general variants of the last statement are also proved.

MSC 2010: Primary 54E35; 26A21

The second author was partially supported in the frame of the project: Development of Mathematical Models, Numerical and Analytical Methods, and Algorithms for Solving Modern Problems of Biomedical Research. State registration number: 0117U002165.


  1. (Communicated by David Buhagiar )

References

[1] Aschbacher, M.—Baldi, P.—Baum, E. B.—Wilson, R. M.: Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564–577.10.1137/0608046Suche in Google Scholar

[2] Bergman, G. M.—Grätzer, G.: Isotone maps on lattices, Algebra Universalis 68 (2012), 17–37.10.1007/s00012-012-0191-2Suche in Google Scholar

[3] Bernig, A.—Foertsch, T.—Schroeder, V.: Non standard metric products, Beitr. Algebra Geom. 44 (2003), 499–510.Suche in Google Scholar

[4] Borsík, J.—Doboš, J.: Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3–12.Suche in Google Scholar

[5] Borsík, J.—Doboš, J.: On a product of metric spaces, Math. Slovaca 31 (1981), 193–205.Suche in Google Scholar

[6] Burbanks, A. D.—Nussbaum, R. D.—Sparrow, C. T.: Extension of order-preserving maps on a cone, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 35–59.10.1017/S0308210500002274Suche in Google Scholar

[7] Corazza, P.: Introduction to metric preserving functions, Amer. Math. Monthly 106 (1999), 309–323.10.1080/00029890.1999.12005048Suche in Google Scholar

[8] Doboš, J.: On modifications of the Euclidean metric on the reals, Tatra Mt. Math. Publ. 8 (1996), 51–54.Suche in Google Scholar

[9] Doboš, J.: The standard Cantor function is subadditive, Proc. Amer. Math. Soc. 124 (1996), 3425–3426.10.1090/S0002-9939-96-03440-5Suche in Google Scholar

[10] Doboš, J.: Metric Preserving Functions, Štroffec, Košice, 1998.Suche in Google Scholar

[11] Dovgoshey, O.: Combinatorial properties of ultrametrics and generalized ultrametrics, Bull. Belg. Math. Soc. Simon Stevin 27 (2020), 379–417.10.36045/bbms/1599616821Suche in Google Scholar

[12] Dovgoshey, O.: Isotone extension and complete lattices, J. Math. Sci. 246 (2020), 631–647; Translation from Ukr. Mat. Visn. 16 (2019), 514–535.Suche in Google Scholar

[13] Dovgoshey, O.: On ultrametric-preserving functions, Math. Slovaca 70 (2020), 173–182.10.1515/ms-2017-0342Suche in Google Scholar

[14] Dovgoshey, O.—Martio, O.: Products of metric spaces, covering numbers, packing numbers, and characterizations of ultrametric spaces, Rev. Roumaine Math. Pures. Appl. 54 (2009), 423–439.Suche in Google Scholar

[15] Dovgoshey, O.—Martio, O.: Functions transferring metrics to metrics, Beitr. Algebra Geom. 54 (2013), 237–261.10.1007/s13366-011-0061-7Suche in Google Scholar

[16] Dovgoshey, O.—Petrov, E.—Kozub, G.: Metric products and continuation of isotone functions, Math. Slovaca 64 (2014), 187–208.10.2478/s12175-013-0195-1Suche in Google Scholar

[17] Foertsch, T.—Schroeder, V.: Minkowski-versus Euclidean rank for products of metric spaces, Adv. Geom. 2 (2002), 123–131.10.1515/advg.2002.002Suche in Google Scholar

[18] Fofanova, T. S.: Isotone mappings of free lattices, Math. Notes 4 (1969), 734–741.10.1007/BF01093711Suche in Google Scholar

[19] Hensel, K.: Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. 6 (1897), 83–88.10.1515/crll.1905.128.1Suche in Google Scholar

[20] Herburt, I.—Moszyńska, M.: On metric products, Coll. Math. 62 (1991), 121–133.10.4064/cm-62-1-121-133Suche in Google Scholar

[21] Katok, S.: p-adic Analysis Compared with Real Analysis, Amer. Math. Soc., 2007.10.1090/stml/037Suche in Google Scholar

[22] Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions. Grad. Texts in Math. 58, Springer-Verlag, New York, 1984.10.1007/978-1-4612-1112-9Suche in Google Scholar

[23] Lemin, A. Y.: Isometric imbedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Soviet. Math. Dokl. 32 (1985), 740–744.Suche in Google Scholar

[24] Pongsriiam, P.—Termwuttipong, I.: Remarks on ultrametrics and metric-preserving functions, Abstr. Appl. Anal. 2014 (2014), 1–9.10.1155/2014/163258Suche in Google Scholar

[25] Priess-Crampe, S.—Ribenboim, P.: Fixed points, combs and generalized power series, Abh. Math. Sem. Univ. Hamburg 63 (1993), 227–244.10.1007/BF02941344Suche in Google Scholar

[26] Priess-Crampe, S.—Ribenboim, P.: Generalized ultrametric spaces I., Abh. Math. Sem. Univ. Hamburg 66 (1996), 55–73.10.1007/BF02940794Suche in Google Scholar

[27] Priess-Crampe, S.—Ribenboim, P.: Generalized ultrametric spaces II, Abh. Math. Sem. Univ. Hamburg 67 (1997), 19–31.10.1007/BF02940817Suche in Google Scholar

[28] Ribenboim, P.: The new theory of ultrametric spaces, Period. Math. Hungar. 32 (1996), 103–111.10.1007/BF01879736Suche in Google Scholar

[29] Ribenboim, P.: The immersion of ultrametric spaces into Hahn spaces, J. Algebra 323 (2009), 1482–1493.10.1016/j.jalgebra.2009.11.032Suche in Google Scholar

[30] Sikorski, R.: A theorem on extension of homomorphisms, Ann. Soc. Pol. Math. 21 (1948), 332–335.Suche in Google Scholar

[31] Timan, A. F.: On the isometric mapping of some ultrametric spaces into Lp-spaces, Proc. Steklov Inst. Math. 134 (1975), 357–370.Suche in Google Scholar

[32] Vallin, R. W.: On preserving (ℝ, Eucl.), and almost periodic functions, Tatra Mt. Math. Publ 24 (2002), 1–6.Suche in Google Scholar

[33] Wilson, W. A.: On certain type of continuous transformation of metric spaces, Amer. J. Math. 57 (1935), 62–68.10.2307/2372019Suche in Google Scholar

Received: 2019-12-22
Accepted: 2020-06-23
Published Online: 2021-04-14
Published in Print: 2021-04-27

© 2021 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Prof. RNDr. Michal Fečkan, DrSc. – Sexagenarian?
  3. Tribonacci numbers with two blocks of repdigits
  4. Padovan numbers that are concatenations of two distinct repdigits
  5. On the 2-rank and 4-rank of the class group of some real pure quartic number fields
  6. A general inverse matrix series relation and associated polynomials – II
  7. Some hardy type inequalities with finsler norms
  8. Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives
  9. Block Hessenberg matrices and spectral transformations for matrix orthogonal polynomials on the unit circle
  10. How is the period of a simple pendulum growing with increasing amplitude?
  11. Fourier transforms of convolution operators on orlicz spaces
  12. Some characterizations of property of trans-Sasakian 3-manifolds
  13. P-Adic metric preserving functions and their analogues
  14. On statistical convergence of sequences of closed sets in metric spaces
  15. A characterization of the uniform convergence points set of some convergent sequence of functions
  16. A nonparametric estimation of the conditional ageing intensity function in censored data: A local linear approach
  17. Donsker’s fuzzy invariance principle under the Lindeberg condition
  18. Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics
  19. Matrix variate pareto distributions
  20. Global exponential periodicity and stability of neural network models with generalized piecewise constant delay
  21. Optimal inequalities for contact CR-submanifolds in almost contact metric manifolds
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0476/html?lang=de
Button zum nach oben scrollen