Startseite Mathematik Outer and inner approximations in quantum spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Outer and inner approximations in quantum spaces

  • Mona Khare und Pratibha Pandey EMAIL logo
Veröffentlicht/Copyright: 29. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present paper introduces and studies the concepts of K-outer approximation and K-inner approximation for a monotone function μ defined on a D-poset P, by a subfamily K of P. Some desirable properties of K-approximable functions are established and it is shown that the family of all elements of P that possess K-approximation, forms a lattice and is closed under orthosupplementation. We have proved that a submodular measure on a suitable subfamily of P having K-outer approximation can be extended to a function that has K-outer approximation, and a tight function that has K-inner approximation can be extended to a function having K-inner approximation.


The second author acknowledges with gratitude the financial support by Department of Science and Technology (DST), New Delhi, India, under INSPIRE fellowship No. IF160721.




Acknowledgement

The authors are grateful to the anonymous referees for their valuable suggestions toward the improvement of the paper.

  1. (Communicated by Anatolij Dvurečenskij )

References

[1] Adamski, W.: On extremal extensions of regular contents and measures, Proc. Amer. Math. Soc. 121 (1994), 1159–1164.10.1090/S0002-9939-1994-1204367-3Suche in Google Scholar

[2] Adamski, W.: On regular extensions of contents and measures, J. Math. Anal. Appl. 127 (1987), 211–225.10.1016/0022-247X(87)90153-3Suche in Google Scholar

[3] Avallone, A.—Basile, A.: On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl. 286 (2003), 378–390.10.1016/S0022-247X(03)00274-9Suche in Google Scholar

[4] Avallone, A.—Simone, A. De.—Vitolo, P.: Effect algebras and extensions of measures, Bollettino U.M.I. 9-B(8) (2006), 423–444.Suche in Google Scholar

[5] Beltrametti, E. G.—Cassinelli, G.: The Logic of Quantum Mechanics, Addison-Wesley, 1981.Suche in Google Scholar

[6] Bennett, M. K.—Foulis, D. J.: Phi-symmetric effect algebras, Found. Phys. 25 (1995), 1699–1722.10.1007/BF02057883Suche in Google Scholar

[7] Birkhoff, G.—von Neumann, J.: The logic of quantum mechanics, Ann. Math. 37 (1936), 823–834.10.2307/1968621Suche in Google Scholar

[8] Busch, P.—Lahti, P.—Mittelstaedt, P.: The Quantum Theory of Measurements. Lecture Notes in Phys., New Series m2, Springer, Berlin, 1991.10.1007/978-3-662-13844-1Suche in Google Scholar

[9] Butnariu, D.—Klement, P.: Triangular Norm-based Measures and Games with Fuzzy Coalitions, Kluwer, Dordrecht, 1993.10.1007/978-94-017-3602-2Suche in Google Scholar

[10] Chiara, M. Dalla—Giuntini, R.—Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics, Kluwer Academic Pub., Dordrecht, 2004.10.1007/978-94-017-0526-4Suche in Google Scholar

[11] Dvurečenskij, A.: On orders of observables on effect algebras, Int. J. Theor. Phys. 56 (2017), 4112–4125.10.1007/s10773-017-3472-xSuche in Google Scholar

[12] Dvurečenskij, A.—Pulmannová, S.: New Trends in Quantum Structures, Kluwer Acad. Pub., 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

[13] Dvurečenskij, A.—Pulmannová, S.: Difference posets, effects and quantum measurements, Int. J. Theor. Phys. 33 (1994), 819–825.10.1007/BF00672820Suche in Google Scholar

[14] Foulis, D. J.—Bennett, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 10 (1994), 1331–1352.10.1007/BF02283036Suche in Google Scholar

[15] Ghirardato, P.—Marinacci, M.: Ambiguity made precise: a comparative foundation, J. Econom. Theory 102 (2002), 251–289.10.4324/9780203358061_chapter_10Suche in Google Scholar

[16] Halmos, P. R.: Measure Theory, Van Nostrand, Princeton, NJ, 1950.10.1007/978-1-4684-9440-2Suche in Google Scholar

[17] Hroch, M.—Pták, P.: States on Orthocomplemented difference posets, Lett. Math. Phys. 106 (2016), 1131–1137.10.1007/s11005-016-0862-6Suche in Google Scholar

[18] Kagan, E.—Bengal, I.: Navigation of quantum-controlled mobile robots. In: Recent Advances in Mobile Robotics (A. Topalov, ed.), InTech, 2011, pp. 311–326.10.5772/25944Suche in Google Scholar

[19] Kalmbach, G.: Orthomodular Lattices, Academic Press, London, 1983.Suche in Google Scholar

[20] Kelley, J. L.—Nayak, M. K.—Srinivasan, T. P.: Premeasure on lattices of sets II, Symposium on Vector Measures, Salt Lake City, Utah, 1972.10.1016/B978-0-12-702450-9.50022-1Suche in Google Scholar

[21] Khare, M.—Gupta, S.: Non-additive measures, envelops and extensions of quasi-measures, Sarajevo J. Math. 6(18) (2010), 35–49.10.5644/SJM.06.1.03Suche in Google Scholar

[22] Khare, M.—Gupta, S.: Extension of non-additive measures on locally completeσ-continuous lattices, Novi Sad J. Math. 38(2) (2008), 15–23.Suche in Google Scholar

[23] Khare, M.—Pandey, P.: Extensions of a tight function and their continuity in quantum logic, Soft Comput. 23(22) (2019), 11389–11398.10.1007/s00500-019-04057-5Suche in Google Scholar

[24] Khare, M.—Shukla, A.: Extensions and measurability in quantum measure spaces, Math. Slovaca 66(2) (2016), 367–378.10.1515/ms-2015-0142Suche in Google Scholar

[25] Khare, M.—Singh, A. K.: Weakly tight functions, their Jordan type decomposition and total variation in effect algebras, J. Math. Anal. Appl. 344(1) (2008), 535–545.10.1016/j.jmaa.2008.03.017Suche in Google Scholar

[26] Khare, M.—Singh, B.—Shukla, A.: Approximation in quantum measure spaces, Math. Slovaca 68(3) (2018), 491–500.10.1515/ms-2017-0119Suche in Google Scholar

[27] Kôpka, F.—Chovanec, F.: D-posets, Math. Slovaca 44 (1994), 21–34.Suche in Google Scholar

[28] Ludwig, G.: Foundations of Quantum Mechanics, Vols. I and II, Springer, New York, 1983/1985.10.1007/978-3-642-86754-5Suche in Google Scholar

[29] Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, Vol. II, Springer, New York, 1986/1987.10.1007/978-3-642-71897-7Suche in Google Scholar

[30] Morales, P.: Extension of a tight set function with values in a uniform semigroup. Measure Theory, Oberwolfach 1981 (D. Kölzow and D. Maharam-Stone, eds.), Lecture Notes in Math. 45, Springer, 1981, pp. 282–292.10.1007/BFb0096685Suche in Google Scholar

[31] Nayak, M. K.—Srinivasan, T. P.: Scalar and vector valued premeasures, Proc. Amer. Math. Soc. 48(2) (1975), 391–396.10.1090/S0002-9939-1975-0369653-6Suche in Google Scholar

[32] Pap, E.: On nonadditive set functions, Atti. Sem. Mat. Fis. Univ. Modena 39 (1991), 345–360.Suche in Google Scholar

[33] Varadarajan, V. S.: Geometry of Quantum Theory, Vol. 1, Van Nostrand, Princeton, New Jersey, 1968.10.1007/978-0-387-49386-2Suche in Google Scholar

[34] Yali, W.—Yichuan, Y.: Notes on quantum logics and involutive bounded posets, Soft Comput. 21 (2017), 2513–2519.10.1007/s00500-017-2579-6Suche in Google Scholar

Received: 2019-12-27
Accepted: 2020-04-14
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0449/html?lang=de
Button zum nach oben scrollen