Startseite New fixed point results in bv(s)-metric spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New fixed point results in bv(s)-metric spaces

  • Tatjana Došenović EMAIL logo , Zoran Kadelburg , Zoran D. Mitrović und Stojan Radenović
Veröffentlicht/Copyright: 10. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Z. D. Mitrović and S. Radenović introduced in [The Banach and Reich contractions inbv(s)-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095] a new class of generalized metric spaces and proved some fixed point theorems in this framework. The purpose of this paper is to consider other kinds of contractive mappings in bv(s)-metric spaces, and show how the work in the new settings differs from the one in standard metric and b-metric spaces. Examples show the usefulness of the obtained results.


We wish to thank the projects MNTRRS-174009 and Ministry for Scientific and Technological Development, Higher Education and Information Society of Republika Srpska (Savremena istraživanja u teoriji fiksne tačke: metrički i topološki pristup, 1255007.)


  1. (Communicated by Gregor Dolinar )

References

[1] Abbas, M.—Chema, I. Z.—Razani, A.: Existence of common fixed point for b-metric rational type contraction, Filomat 30(6) (2016), 1413–1429.10.2298/FIL1606413ASuche in Google Scholar

[2] Aleksić, S.—Mitrović, Z.D.—Radenović, S.: A fixed point theorem of Jungck inbv(s)-metric spaces, Period. Math. Hungar., to appear, https://doi.org/10.1007/s10998-018-0236-1.10.1007/s10998-018-0236-1Suche in Google Scholar

[3] Bakhtin, I. A.: The contraction mapping principle in quasimetric spaces, Funct. Anal. 30 (1989), 26–37.Suche in Google Scholar

[4] Berinde, V.: Approximation fixed points of weak contractions using Picard iteration, Nonlinear Anal. Forum 9(1) (2004), 43–53.10.1155/S1687182004311058Suche in Google Scholar

[5] Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), 31–37.10.5486/PMD.2000.2133Suche in Google Scholar

[6] Czerwik, S.: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11.Suche in Google Scholar

[7] Garai, H.: Personal communication.Suche in Google Scholar

[8] George, R.—Radenović, S.—Reshma, K. P.—Shukla, S.: Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015), 1005–1013.10.22436/jnsa.008.06.11Suche in Google Scholar

[9] Geraghty, M.: On contractive mappings, Proc. Amer. Math. Soc. 40 (1973), 604–608.10.1090/S0002-9939-1973-0334176-5Suche in Google Scholar

[10] Hussain, N.—Parvaneh, V.—Roshan, J.R.—Kadelburg, Z.: Fixed points of cyclic (ψ, φ, L, A, B)-contractive mappings in orderedb-metric spaces with applications, Fixed Point Theory Appl. 2013(256) (2013), 1–18.10.1186/1687-1812-2013-256Suche in Google Scholar

[11] Jovanović, M.—Kadelburg, Z.—Radenović, S.: Common fixed point results in metric type spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 978121.10.1155/2010/978121Suche in Google Scholar

[12] Kadelburg, Z.—Radenović, S.: On generalized metric spaces: a survey, TWMS J. Pure Appl. Math. 5(1) (2014), 3–13.Suche in Google Scholar

[13] Kumam, P.—Rouzkard, F.—Imdad, M.—Gopal, D.: Fixed point theorems on ordered metric spaces through a rational contraction, Abstr. Appl. Anal. 2013 (2013), Art. ID 206515.10.1155/2013/206515Suche in Google Scholar

[14] Miculescu, R.—Mihail, A.: New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl. 19(3) (2017), 2153–2163.10.1007/s11784-016-0400-2Suche in Google Scholar

[15] Mitrović, Z. D.—Radenović, S.: The Banach and Reich contractions inbv(s)-metric spaces, J. Fixed Point Theory Appl. 19 (2017), 3087–3095.10.1007/s11784-017-0469-2Suche in Google Scholar

[16] Roshan, J. R.—Parvaneh, V.—Kadelburg, Z.—Hussain, N.: New fixed point results inb-rectangular metric spaces, Nonlinear Anal. Model. Control. 21(5) (2016), 614–634.10.15388/NA.2016.5.4Suche in Google Scholar

[17] Singh, S. L.—Czerwik, S.—Krol, K.—Singh, A.: Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci. 24 (2008), 401–416.Suche in Google Scholar

[18] Suzuki, T.—Alamri, B.—Kikkawa, M.: Only 3-generalized metric spaces have a compatible symmetric topology, Open Math. 13 (2015), 510–517.10.1515/math-2015-0048Suche in Google Scholar

[19] Zheng, D.—Wang, P.—Čitaković, N.: Meir-Keeler theorem in b-rectangular metric spaces, J. Nonlinear Sci. Appl. 10(4) (2017), 1786–1790.10.22436/jnsa.010.04.39Suche in Google Scholar

Received: 2018-04-22
Accepted: 2019-11-18
Published Online: 2020-03-10
Published in Print: 2020-04-28

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Relatively residuated lattices and posets
  3. Strongly s-dense injective hull and Banaschewski’s theorems for acts
  4. Wild sets in global function fields
  5. Generators and integral points on elliptic curves associated with simplest quartic fields
  6. New Filbert and Lilbert matrices with asymmetric entries
  7. Returning functions with closed graph are continuous
  8. On sets of points of approximate continuity and ϱ-upper continuity
  9. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
  10. On solvability of some nonlocal boundary value problems for biharmonic equation
  11. The study of piecewise pseudo almost periodic solutions for impulsive Lasota-Wazewska model with discontinuous coefficients
  12. Strongly increasing solutions of higher-order quasilinear ordinary differential equations
  13. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments
  14. Filippov solutions of vector Dirichlet problems
  15. Sequences of positive homoclinic solutions to difference equations with variable exponent
  16. Modified Lupaş-Jain operators
  17. New fixed point results in bv(s)-metric spaces
  18. Improved Young and Heinz operator inequalities for unitarily invariant norms
  19. Scrutiny of some fixed point results by S-operators without triangular inequality
  20. The lattices of families of regular sets in topological spaces
  21. Iterated partial summations applied to finite-support discrete distributions
  22. Hamiltonicity of a class of toroidal graphs
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0362/html?lang=de
Button zum nach oben scrollen