Startseite Mathematik Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the fifth Hankel determinant for a family of functions with bounded turnings

  • Muhammad Arif EMAIL logo , Inayat Ullah , Mohsan Raza und Paweł Zaprawa
Veröffentlicht/Copyright: 10. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The main aim of this paper is to study the fifth Hankel determinant for the class of functions with bounded turnings. The results are also investigated for 2-fold symmetric and 4-fold symmetric functions.

MSC 2010: Primary 30C45; 30C50
  1. (Communicated by Stanisława Kanas )

References

[1] Altinkaya, Ş.—Yalçin, S.: Third Hankel determinant for Bazilevič functions, Adv. Math. 5 (2016), 91–96.Suche in Google Scholar

[2] Altinkaya, Ş.—Yalçin, S.: Upper bound of second Hankel determinant for bi-Bazilevic functions, Mediterr. J. Math. 13 (2016), 4081–4090.10.1007/s00009-016-0733-5Suche in Google Scholar

[3] Arif, M.—Noor, K. I.—Raza, M.: Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl. 2012 (2012), #22.10.1186/1029-242X-2012-22Suche in Google Scholar

[4] Arif, M.—Noor, K. I.—Raza, M.—Haq, W.: Some properties of a generalized class of analytic functions related with Janowski functions, Abstr. Appl. Anal. 2012 (2012), Art. ID 279843.10.1155/2012/279843Suche in Google Scholar

[5] Arif, M.—Rani, L.—Raza, M.—Zaprawa, P.: Fourth Hankel determinant for a family of functions with bounded turning, Bull. Korean Math. Soc. 55 (2018), 1703–1711.Suche in Google Scholar

[6] Babalola, K. O.: On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl. 6 (2010), 1–7.Suche in Google Scholar

[7] Bansal, D.: Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (2013), 103–107.10.1016/j.aml.2012.04.002Suche in Google Scholar

[8] Bansal, D.—Maharana, S.—Prajapat, J. K.: Third order Hankel Determinant for certain univalent functions, J. Korean Math. Soc. 52 (2015), 1139–1148.10.4134/JKMS.2015.52.6.1139Suche in Google Scholar

[9] Çaglar, M.—Deniz, E.—Srivastava, H. M.: Second Hankel determinant for certain subclasses of bi-univalent functions, Turk. J. Math. 41 (2017), 694–706.10.3906/mat-1602-25Suche in Google Scholar

[10] Caratheodory, C.: über den Variabilitätsbereich der fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo 32 (1911), 193–217.10.1007/BF03014795Suche in Google Scholar

[11] Hayman, W. K.: On second Hankel determinant of mean univalent functions, Proc. London Math. Soc. 3 (1968), 77–94.10.1112/plms/s3-18.1.77Suche in Google Scholar

[12] Janteng, A.—Halim, S. A.—Darus, M.: Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. 7 (2006), 1–5.Suche in Google Scholar

[13] Janteng, A.—Halim, S. A.—Darus, M.: Hankel determinant for starlike and convex functions, Int. J. Math. Anal. 1 (2007), 619–625.Suche in Google Scholar

[14] Kowalczyk, B.—Lecko, A.—Sim, Y. J.: The sharp bound of the Hankel determinant of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (2018), 435–445.10.1017/S0004972717001125Suche in Google Scholar

[15] Krishna, D. V.—Venkateswarlu, B.—RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc. 34 (2015), 121–127.10.1016/j.jnnms.2015.03.001Suche in Google Scholar

[16] Kwon, O. S.—Lecko, A.—Sim, Y. J.: The bound of the Hankel determinant of the third kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2019), 767–780.10.1007/s40840-018-0683-0Suche in Google Scholar

[17] Lee, S. K.—Ravichandran, V.—Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl. 2013, (2013), #281.10.1186/1029-242X-2013-281Suche in Google Scholar

[18] Lecko, A.—Sim, Y. J.—Śmiarowska, B.: The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 2018 (2018), 1–8.10.1007/s11785-018-0819-0Suche in Google Scholar

[19] Liu, M. S.—Xu, J. F.—Yang, M.: Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal. 2014 (2014), Art. ID 603180.10.1155/2014/603180Suche in Google Scholar

[20] Livingston, A. E.: The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc. 21 (1969), 545–552.10.1090/S0002-9939-1969-0243054-0Suche in Google Scholar

[21] Noonan, J. W.—Thomas, D. K.: On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337–346.10.2307/1997533Suche in Google Scholar

[22] Noor, K. I.: Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl. 28 (1983), 731–739.Suche in Google Scholar

[23] Noor, K. I.: On certain analytic functions related with strongly close-to-convex functions, Appl. Math. Comput. 197 (2008), 149–157.10.1016/j.amc.2007.07.039Suche in Google Scholar

[24] Orhan, H.—Magesh, N.—Yamini, J.: Bounds for the second Hankel determinant of certain bi-univalent functions, Turk. J. Math. 40 (2016), 679–687.10.3906/mat-1505-3Suche in Google Scholar

[25] Pommerenke, C.: On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc. 1 (1966), 111–122.10.1112/jlms/s1-41.1.111Suche in Google Scholar

[26] Pommerenke, C.: On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108–112.10.1112/S002557930000807XSuche in Google Scholar

[27] Răducanu, D.—Zaprawa, P.: Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris 355 (2017), 1063–1071.10.1016/j.crma.2017.09.006Suche in Google Scholar

[28] Raza, M.—Malik, S. N.: Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013), #412.10.1186/1029-242X-2013-412Suche in Google Scholar

[29] Shanmugam, G.—Stephen, B. A.—Babalola, K. O.: Third Hankel determinant for α-starlike functions, Gulf J. Math. 2 (2014), 107–113.10.56947/gjom.v2i2.202Suche in Google Scholar

[30] Shi, L.—Ali, I.—Arif, M.—Cho, N. E.—Hussain, S.—Khan, H.: A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics 11 (2019), 15 pages.10.3390/math7050418Suche in Google Scholar

[31] Shi, L.—Srivastava, H. M.—Arif, M.—Hussain, S.—Khan H.: An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry 11 (2019), #598.10.3390/sym11050598Suche in Google Scholar

[32] Zaprawa, P.: Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (2017), #19.10.1007/s00009-016-0829-ySuche in Google Scholar

[33] Zhang, H-Y.—Tang, H.—Niu, X-M.: Third-order Hankel determinant for certain class of analytic functions related with exponential function, Symmetry 10 (2018), #501.10.3390/sym10100501Suche in Google Scholar

Received: 2019-05-24
Accepted: 2019-09-15
Published Online: 2020-03-10
Published in Print: 2020-04-28

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Relatively residuated lattices and posets
  3. Strongly s-dense injective hull and Banaschewski’s theorems for acts
  4. Wild sets in global function fields
  5. Generators and integral points on elliptic curves associated with simplest quartic fields
  6. New Filbert and Lilbert matrices with asymmetric entries
  7. Returning functions with closed graph are continuous
  8. On sets of points of approximate continuity and ϱ-upper continuity
  9. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
  10. On solvability of some nonlocal boundary value problems for biharmonic equation
  11. The study of piecewise pseudo almost periodic solutions for impulsive Lasota-Wazewska model with discontinuous coefficients
  12. Strongly increasing solutions of higher-order quasilinear ordinary differential equations
  13. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments
  14. Filippov solutions of vector Dirichlet problems
  15. Sequences of positive homoclinic solutions to difference equations with variable exponent
  16. Modified Lupaş-Jain operators
  17. New fixed point results in bv(s)-metric spaces
  18. Improved Young and Heinz operator inequalities for unitarily invariant norms
  19. Scrutiny of some fixed point results by S-operators without triangular inequality
  20. The lattices of families of regular sets in topological spaces
  21. Iterated partial summations applied to finite-support discrete distributions
  22. Hamiltonicity of a class of toroidal graphs
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0354/html
Button zum nach oben scrollen