Startseite Modified Lupaş-Jain operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modified Lupaş-Jain operators

  • Murat Bodur EMAIL logo
Veröffentlicht/Copyright: 10. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The goal of this paper is to propose a modification of Lupaş-Jain operators based on a function ρ having some properties. Primarily, the convergence of given operators in weighted spaces is discussed. Then, order of approximation via weighted modulus of continuity is computed for these operators. Further, Voronovskaya type theorem in quantitative form is taken into consideration, as well. Ultimately, some graphical results that illustrate the convergence of investigated operators to f are given.

  1. Communicated by Marcus Waurick

References

[1] Abel, U.—Ivan, M.: On a generalization of an approximation operator defined by A. Lupaş, Gen. Math. 15(1) (2007), 21–34.Suche in Google Scholar

[2] Abel, U.—Agratini, O.: Asymptotic behaviour of Jain operators, Numer. Algorithms 71 (2016), 553–565.10.1007/s11075-015-0009-3Suche in Google Scholar

[3] Acar, T.: Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput. 263 (2015), 223–239.10.1016/j.amc.2015.04.060Suche in Google Scholar

[4] Acar, T.—Aral, A.—Raşa, I.: Modified Bernstein-Durrmeyer operators, Gen. Math. 22(1) (2014), 27–41.Suche in Google Scholar

[5] Agratini, O.: On a sequence of linear positive operators, Facta Univ. Ser. Math. Inform. 14 (1999), 41–48.Suche in Google Scholar

[6] Agratini, O.: Approximation properties of a class of linear operators, Math. Methods Appl. Sci. 36(17) (2013), 2353–2358.10.1002/mma.2758Suche in Google Scholar

[7] Aral, A.—Inoan, D.—Raşa, I.: On the generalized Szász-Mirakyan operators, Results Math. 65 (2014), 441–452.10.1007/s00025-013-0356-0Suche in Google Scholar

[8] Aral, A.—Ari, D. A.—Cárdenas-Morales, D.: A note on Baskakov operators based on a function ν, Creat. Math. Inform. 25(1) (2016), 15–27.10.37193/CMI.2016.01.03Suche in Google Scholar

[9] Başcanbaz-Tunca, G.—İnce İlarslan, H. G.—Erençİn, A.: Bivariate Bernstein type operators, Appl. Math. Comput. 273 (2016), 543–552.10.1016/j.amc.2015.10.037Suche in Google Scholar

[10] Başcanbaz-Tunca, G.—Bodur, M.—Söylemez, D.: On Lupaş-Jain Operators, Stud. Univ. Babeş-Bolyai Math. 63(4) (2018), 525–537.10.24193/subbmath.2018.4.08Suche in Google Scholar

[11] Başcanbaz-Tunca, G.—Erençİn, A.—İnce İLARSLAN H. G.: Quantitative estimates for modified Beta operators, Matematički Vesnik, in press.Suche in Google Scholar

[12] Bodur, M.—Taşdelen, F.—Başcanbaz-Tunca, G.: On multivariate Lupaş operators, Hacet. J. Math. Stat. 47(4) (2018), 783–792.10.15672/HJMS.2017.500Suche in Google Scholar

[13] Cárdenas-Morales, D.—Garrancho, P.—Raşa, I.: Bernstein-type operators which preserve polynomials, Comput. Math. Appl. 62 (2011), 158–163.10.1016/j.camwa.2011.04.063Suche in Google Scholar

[14] Erençİn, A.—Olgun, A.—Taşdelen, F.: Generalized Baskakov type operators, Math. Slovaca 67(5) (2017), 1269–1277.10.1515/ms-2017-0048Suche in Google Scholar

[15] Erençİn, A.—Başcanbaz-Tunca, G.—Taşdelen, F.: Some properties of the operators defined by Lupaş, Rev. Anal. Numér. Théor. Approx. 43(2) (2014), 158–164.Suche in Google Scholar

[16] Farcaş, A.: An asymptotic formula for Jain’s operators, Stud. Univ. Babeş-Bolyai Math. 57(4) (2012), 511–517.Suche in Google Scholar

[17] Finta, Z.: Quantitative estimates for some linear and positive operators, Stud. Univ. Babeş-Bolyai Math. 47(3) (2002), 71–84.Suche in Google Scholar

[18] Gadjiev, A.D.: Theorems of the type of P. P. Korovkin type theorems, Math. Zametki 20(5) (1976), 781–786.10.1007/BF01146928Suche in Google Scholar

[19] Holhoş, A.: Quantitative estimates for positive linear operators in weighted spaces, Gen. Math. 16 (2008), 99–110.Suche in Google Scholar

[20] Jain, G.C.: Approximation of functions by a new class of linear operators, J. Austral. Math. Soc. 13(3) (1972), 271–276.10.1017/S1446788700013689Suche in Google Scholar

[21] Lupaş, A.: The approximation by some positive linear operators. In: Proceedings of the International Dortmund Meeting on Approximation Theory (M. W. Muller et al., eds.), Akademie Verlag, Berlin 1995, pp. 201–229.Suche in Google Scholar

[22] Olgun, A.—Taşdelen, F.—Erençİn, A.: A generalization of Jain’s operators, Appl. Math. Comput. 266 (2015), 6–11.10.1016/j.amc.2015.05.060Suche in Google Scholar

[23] Patel, P.—Mishra, V. N.: On new class of linear and positive operators, Boll. Unione Mat. Ital. 8 (2015), 81–96.10.1007/s40574-015-0026-0Suche in Google Scholar

[24] Patel, P.—Mishra, V. N.: Jain-Baskakov operators and its different generalization, Acta Math. Vietnam 40 (2015), 715–733.10.1007/s40306-014-0077-9Suche in Google Scholar

[25] Sofonea, D. F.: On a sequence of linear and positive operators, Results Math. 53(3–4) (2009), 435–444.10.1007/s00025-008-0355-8Suche in Google Scholar

[26] Söylemez, D.: Some properties of the generalized Bleimann, Butzer and Hahn operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 64(2) (2015), 55–62.10.1501/Commua1_0000000733Suche in Google Scholar

[27] Taşdelen Yeşİldal, F.—Bodur, M.: Bivariate Baskakov type operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM. 113(4) (2019), 3269–3281. https://doi.org/10.1007/s13398-019-00695-4.10.1007/s13398-019-00695-4Suche in Google Scholar

Received: 2019-05-03
Accepted: 2019-09-05
Published Online: 2020-03-10
Published in Print: 2020-04-28

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Relatively residuated lattices and posets
  3. Strongly s-dense injective hull and Banaschewski’s theorems for acts
  4. Wild sets in global function fields
  5. Generators and integral points on elliptic curves associated with simplest quartic fields
  6. New Filbert and Lilbert matrices with asymmetric entries
  7. Returning functions with closed graph are continuous
  8. On sets of points of approximate continuity and ϱ-upper continuity
  9. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
  10. On solvability of some nonlocal boundary value problems for biharmonic equation
  11. The study of piecewise pseudo almost periodic solutions for impulsive Lasota-Wazewska model with discontinuous coefficients
  12. Strongly increasing solutions of higher-order quasilinear ordinary differential equations
  13. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments
  14. Filippov solutions of vector Dirichlet problems
  15. Sequences of positive homoclinic solutions to difference equations with variable exponent
  16. Modified Lupaş-Jain operators
  17. New fixed point results in bv(s)-metric spaces
  18. Improved Young and Heinz operator inequalities for unitarily invariant norms
  19. Scrutiny of some fixed point results by S-operators without triangular inequality
  20. The lattices of families of regular sets in topological spaces
  21. Iterated partial summations applied to finite-support discrete distributions
  22. Hamiltonicity of a class of toroidal graphs
Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0361/html
Button zum nach oben scrollen