Home Strongly s-dense injective hull and Banaschewski’s theorems for acts
Article
Licensed
Unlicensed Requires Authentication

Strongly s-dense injective hull and Banaschewski’s theorems for acts

  • Hasan Barzegar EMAIL logo
Published/Copyright: March 10, 2020
Become an author with De Gruyter Brill

Abstract

For a class 𝓜 of monomorphisms of a category, mathematicians usually use different types of essentiality. Essentiality is an important notion closely related to injectivity. Banaschewski defines and gives sufficient conditions on a category 𝓐 and a subclass 𝓜 of its monomorphisms under which 𝓜-injectivity well-behaves with respect to the notions such as 𝓜-absolute retract and 𝓜-essentialness.

In this paper, 𝓐 is taken to be the category of acts over a semigroup S and 𝓜sd to be the class of strongly s-dense monomorphisms. We study essentiality with respect to strongly s-dense monomorphisms of acts. Depending on a class 𝓜 of morphisms of a category 𝓐, In some literatures, three different types of essentialness are considered. Each has its own benefits in regards with the behavior of 𝓜-injectivity. We will show that these three different definitions of essentiality with respect to the class of strongly s-dense monomorphisms are equivalent. Also, the existence and the explicit description of a strongly s-dense injective hull for any given act which is equivalent to the maximal such essential extension and minimal strongly s-dense injective extension with respect to strongly s-dense monomorphism is investigated. At last we conclude that strongly s-dense injectivity well behaves in the category Act-S.

MSC 2010: 08A60; 18A20; 20M30; 20M50
  1. Communicated by Aleš Pultr

References

[1] Banaschewski, B.: Injectivity and essential extensions in equational classes of algebras. Queens Papers in Pure and Appl. Math. 25, 1970, pp. 131–147.Search in Google Scholar

[2] Banaschewski, B.–-Nelson, E.: Equational compactness in equational classes of algebras, Algebra Universalis 2 (1972), 152–165.10.1007/BF02945023Search in Google Scholar

[3] Barzegar, H.: Strongly s-dense monomorphism, J. Hyperstructures 1(1) (2012), 14–26.Search in Google Scholar

[4] Barzegar, H.: Sequentially compactS-act, Journal of Algebraic Systems 5(2) (2017), 111–125.Search in Google Scholar

[5] Barzegar, H.–-Ebrahimi, M. M.–-Mahmoudi, M.: Essentiality and injectivity, Appl. Categ. Structures 18(1) (2010), 73–83.10.1007/s10485-008-9165-0Search in Google Scholar

[6] Berthiaume, P.: The injective envelope ofS-Sets, Canad. Math. Bull. 10(2) (1967), 261–273.10.4153/CMB-1967-026-1Search in Google Scholar

[7] Kilp, M.–-Knauer U.–-Mikhalev, A.: Monoids, Acts and Categories, Walter de Gruyter, Berlin, New York, 2000.10.1515/9783110812909Search in Google Scholar

[8] Tholen, W.: Injective objects and cogenerating sets, J. Algebra 73(1) (1981), 139–155.10.1016/0021-8693(81)90351-3Search in Google Scholar

[9] Tholen, W.: Injectivity versus exponentiability, Cah. Topol. Géom. Différ. Catég. 49(3) (2008), 228–240.Search in Google Scholar

[10] Warfield, R. B.: Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719.10.2140/pjm.1969.28.699Search in Google Scholar

Received: 2018-10-07
Accepted: 2019-10-18
Published Online: 2020-03-10
Published in Print: 2020-04-28

© 2020 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Regular papers
  2. Relatively residuated lattices and posets
  3. Strongly s-dense injective hull and Banaschewski’s theorems for acts
  4. Wild sets in global function fields
  5. Generators and integral points on elliptic curves associated with simplest quartic fields
  6. New Filbert and Lilbert matrices with asymmetric entries
  7. Returning functions with closed graph are continuous
  8. On sets of points of approximate continuity and ϱ-upper continuity
  9. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
  10. On solvability of some nonlocal boundary value problems for biharmonic equation
  11. The study of piecewise pseudo almost periodic solutions for impulsive Lasota-Wazewska model with discontinuous coefficients
  12. Strongly increasing solutions of higher-order quasilinear ordinary differential equations
  13. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments
  14. Filippov solutions of vector Dirichlet problems
  15. Sequences of positive homoclinic solutions to difference equations with variable exponent
  16. Modified Lupaş-Jain operators
  17. New fixed point results in bv(s)-metric spaces
  18. Improved Young and Heinz operator inequalities for unitarily invariant norms
  19. Scrutiny of some fixed point results by S-operators without triangular inequality
  20. The lattices of families of regular sets in topological spaces
  21. Iterated partial summations applied to finite-support discrete distributions
  22. Hamiltonicity of a class of toroidal graphs
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0348/html
Scroll to top button