Startseite Mathematik Sequences of positive homoclinic solutions to difference equations with variable exponent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sequences of positive homoclinic solutions to difference equations with variable exponent

  • Robert Stegliński EMAIL logo und Magdalena Nockowska-Rosiak
Veröffentlicht/Copyright: 10. März 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the existence of infinitely many positive homoclinic solutions to a second-order difference equation on integers with pk-Laplacian. To achieve our goal we use the critical point theory and the general variational principle of Ricceri.

  1. (Communicated by Michal Fečkan )

References

[1] Avci, M.—Pankov, A.: Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl. 431 (2015), 22–33.10.1016/j.jmaa.2015.05.056Suche in Google Scholar

[2] Bonanno, G.—Chinně, A.: Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems, Complex Var. Elliptic Equ. 57(11) (2012), 1233–1246.10.1080/17476933.2012.662225Suche in Google Scholar

[3] Bonanno, G.—Molica Bisci, G.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), 1–20.10.1155/2009/670675Suche in Google Scholar

[4] Bonanno, G.—Molica Bisci, G.—Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces, Nonlinear Anal. 75(12) (2012), 4441–4456.10.1016/j.na.2011.12.016Suche in Google Scholar

[5] Cabada, A.—Iannizzotto, A.–Tersian, S.: Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl. 356 (2009), 418–428.10.1016/j.jmaa.2009.02.038Suche in Google Scholar

[6] Candito, P.—Molica Bisci, G.: Existence of two solutions for a second-order discrete boundary value problem, Adv. Nonlinear Stud. 11 (2011), 443–453.10.1515/ans-2011-0212Suche in Google Scholar

[7] Chen, P.—Tang, X. H.—Agarwal, R. P.: Existence of homoclinic solutions for p(n)-Laplacian Hamiltonian systems on Orlicz sequence spaces, Math. Comput. Modelling 55(3–4) (2012), 989–1002.10.1016/j.mcm.2011.09.025Suche in Google Scholar

[8] Faraci, F.—Kristály, A.: One-dimensional scalar field equations involving an oscillatory nonlinear term, Discrete Contin. Dyn. Syst 18(1) (2007), 107–120.10.3934/dcds.2007.18.107Suche in Google Scholar

[9] Iannizzotto, A.—Rădulescu, V.: Positive homoclinic solutions for the discretep-Laplacian with a coercive potential, Differential Integral Equations 27 (2014), 35–44.10.57262/die/1384282852Suche in Google Scholar

[10] Iannizzotto, A.—Tersian, S.: Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl. 403 (2013), 173–182.10.1016/j.jmaa.2013.02.011Suche in Google Scholar

[11] Kong, L.: Homoclinic solutions for a second order difference equation with p-Laplacian, Appl. Math. Comput. 247 (2014), 1113–1121.10.1016/j.amc.2014.09.069Suche in Google Scholar

[12] Kristály, A.—Mihăilescu, M.—Rădulescu, V.: Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Difference Equ. Appl. 17 (2011), 1431–1440.10.1080/10236190903555245Suche in Google Scholar

[13] Kristály, A.—Morosanu, G.—Tersian, S.: Quasilinear elliptic problems in ℝn involving oscillatory nonlinearities, J. Differential Equations 235 (2007), 366–375.10.1016/j.jde.2007.01.012Suche in Google Scholar

[14] Kristály, A.—Rădulescu, V.—Varga, C.: Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems. In: Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010.Suche in Google Scholar

[15] Kuang, J.: On ground states of discrete p(k)-Laplacian systems in generalized Orlicz sequence spaces, Abstr. Appl. Anal. 2014, Art. ID 808102.10.1155/2014/808102Suche in Google Scholar

[16] Ma, M.—Guo, Z.: Homoclinic orbits for second order self-adjont difference equations, J. Math. Anal. Appl. 323 (2006), 513–521.10.1016/j.jmaa.2005.10.049Suche in Google Scholar

[17] Molica Bisci, G.—Repovš, D.: Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput. 242 (2014), 454–461.10.1016/j.amc.2014.05.118Suche in Google Scholar

[18] Papageorgiou, N. S.—Rădulescu, V. D.—Repovš, D. D.: Nonlinear AnalysisTheory and Methods. Springer Monogr. Math., Springer, Cham, 2019.10.1007/978-3-030-03430-6Suche in Google Scholar

[19] Rădulescu, V.: Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336-369.10.1016/j.na.2014.11.007Suche in Google Scholar

[20] Rădulescu, V.—Repovš, D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor and Francis Group, Boca Raton FL, 2015.10.1201/b18601Suche in Google Scholar

[21] Ricceri, B.: A general variational principle and some of its applications, J. Comput. Appl. Math. 133 (2000), 401–410.10.1016/S0377-0427(99)00269-1Suche in Google Scholar

[22] Stegliński, R.: On sequences of large homoclinic solutions for a difference equations on the integers, Adv. Differ. Equ. 198 (2016), 11 pp.10.1186/s13662-016-0771-0Suche in Google Scholar

[23] Stegliński, R.: On sequences of large homoclinic solutions for a difference equation on the integers involving oscillatory nonlinearities, Electron. J. Qual. Theory Differ. Equ. 35 (2016), 11 pp.10.14232/ejqtde.2016.1.35Suche in Google Scholar

[24] Stegliński, R.: Sequences of small homoclinic solutions for a difference equations on integers, Electr. J. Diff. Equ. 228 (2017), 1–12.10.1186/s13662-016-0771-0Suche in Google Scholar

[25] Stegliński, R.: On homoclinic solutions for a second order difference equations withp-Laplacian, Discrete Contin. Dyn. Syst. Ser. B23(1) (2018), 487–492.10.3934/dcdsb.2018033Suche in Google Scholar

[26] Sun, G.—Mai, A.: Infinitely many homoclinic solutions for second order nonlinear difference equations withp-Laplacian, The Scientific World Journal 2014, Art. ID 276372.10.1155/2014/276372Suche in Google Scholar PubMed PubMed Central

Received: 2019-07-29
Accepted: 2019-09-04
Published Online: 2020-03-10
Published in Print: 2020-04-28

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Relatively residuated lattices and posets
  3. Strongly s-dense injective hull and Banaschewski’s theorems for acts
  4. Wild sets in global function fields
  5. Generators and integral points on elliptic curves associated with simplest quartic fields
  6. New Filbert and Lilbert matrices with asymmetric entries
  7. Returning functions with closed graph are continuous
  8. On sets of points of approximate continuity and ϱ-upper continuity
  9. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings
  10. On solvability of some nonlocal boundary value problems for biharmonic equation
  11. The study of piecewise pseudo almost periodic solutions for impulsive Lasota-Wazewska model with discontinuous coefficients
  12. Strongly increasing solutions of higher-order quasilinear ordinary differential equations
  13. Oscillation of second order half-linear neutral differential equations with weaker restrictions on shifted arguments
  14. Filippov solutions of vector Dirichlet problems
  15. Sequences of positive homoclinic solutions to difference equations with variable exponent
  16. Modified Lupaş-Jain operators
  17. New fixed point results in bv(s)-metric spaces
  18. Improved Young and Heinz operator inequalities for unitarily invariant norms
  19. Scrutiny of some fixed point results by S-operators without triangular inequality
  20. The lattices of families of regular sets in topological spaces
  21. Iterated partial summations applied to finite-support discrete distributions
  22. Hamiltonicity of a class of toroidal graphs
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0360/html?lang=de
Button zum nach oben scrollen