Home Mathematics Free power-associative n-ary groupoids
Article
Licensed
Unlicensed Requires Authentication

Free power-associative n-ary groupoids

  • Vesna Celakoska-Jordanova EMAIL logo and Valentina Miovska
Published/Copyright: January 22, 2019
Become an author with De Gruyter Brill

Abstract

A power-associative n-ary groupoid is an n-ary groupoid G such that for every element aG, the n-ary subgroupoid of G generated by a is an n-ary subsemigroup of G. The class 𝓟a of power-associative n-ary groupoids is a variety. A description of free objects in this variety and their characterization by means of injective n-ary groupoids in 𝓟a are obtained.

  1. (Communicated by Miroslav Ploščica)

References

[1] Albert, A.: Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593.10.1090/S0002-9947-1948-0027750-7Search in Google Scholar

[2] Bruck, R. H.: A Survey of Binary Systems, Springer-Verlag, Berlin-Götingen-Heidelberg, 1958.10.1007/978-3-662-35338-7Search in Google Scholar

[3] Burris, S.—Sankappanavar, H. P.: A Course in Universal Algebra. Grad. Texts in Math., Springer-Verlag, 1981.10.1007/978-1-4613-8130-3Search in Google Scholar

[4] Celakoska-Jordanova, V.: Ternary groupoid powers, Mat. Bilten 33 (2009), 15–19.Search in Google Scholar

[5] Celakoska-Jordanova, V.: Free power-commutative groupoids, Math. Slovaca 65(1) (2015), 23–33.10.1515/ms-2015-0003Search in Google Scholar

[6] Čupona, Ğ.—Celakoski, N.—Ilić, S.: On monoassociative groupoids, Mat. Bilten 26 (2002), 5–16.Search in Google Scholar

[7] Ježek, J.: Universal Algebra, Online edition, Praha, 2008.Search in Google Scholar

[8] Monk, J. D.—Sioson, F. M.: On the general theory of m-groups, Fund. Math. 72(3) (1971), 233–244.10.4064/fm-72-3-233-244Search in Google Scholar

[9] Sioson, F. M.: Cyclic and homogeneous m-semigroups, Proc. Japan Acad. Ser. A Math. Sci. 39 (1963), 444–449.10.3792/pja/1195522996Search in Google Scholar

Received: 2017-04-05
Accepted: 2018-03-06
Published Online: 2019-01-22
Published in Print: 2019-02-25

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0203/pdf
Scroll to top button