Home Physical Sciences Molecular structure of Te2 Mg2(μ3-Cl2)(μ2-Cl4)Cl6(THF)4·CH2 Cl2
Article Open Access

Molecular structure of Te2 Mg23-Cl2)(μ2-Cl4)Cl6(THF)4·CH2 Cl2

  • Malte Hesse and Jens Beckmann EMAIL logo
Published/Copyright: September 26, 2014

Abstract

A few crystals of the title compound Te2 Mg23-Cl2)(μ2-Cl4)Cl6(THF)4·CH2 Cl2 (CH2 Cl2) were isolated accidentally from a reaction mixture that contained the starting materials TeCl4 and t-BuMgCl in THF and that was recrystallized from CH2 Cl2. The molecular structure of CH2 Cl2 determined by X-ray crystallography features a rare TeCl3- moiety.

The VSEPR concept suggests tellurium tetrachloride, TeCl4, to adopt a trigonal bipyramidal structure when taking into account the stereochemically active lone pair. This spatial arrangement is indeed observed in the gas phase; however, in the condensed phase, the structure looks different (Shlykov et al., 2010). Tellurium tetrachloride contains isolated Te43-Cl4)Cl12 units (I) comprising a cube-like structure (Scheme 1) (Buss and Krebs, 1970, 1971). The spatial arrangement of the Te atoms is distorted octahedral and defined by three short (covalent) and three longer (ionic) Te-Cl bonds.

Scheme 1 Molecular structures of Te4(μ3-Cl4)Cl12 (I), Te2 Mg2(μ3-Cl2)(μ2-Cl4)Cl6(THF)4 (1), (R2 Te)4(μ3-Cl2)(μ2-Cl4)Cl2 (II, R=4-MeC6 H4, 4-MeOC6 H4), and (EtMg)2 Mg2(μ3-Cl2)(μ2-Cl4)(THF)6 (III).
Scheme 1

Molecular structures of Te43-Cl4)Cl12 (I), Te2 Mg23-Cl2)(μ2-Cl4)Cl6(THF)4 (1), (R2 Te)43-Cl2)(μ2-Cl4)Cl2 (II, R=4-MeC6 H4, 4-MeOC6 H4), and (EtMg)2 Mg23-Cl2)(μ2-Cl4)(THF)6 (III).

The three TeCl3+ ions situated at the apexes of the cube are also present in solutions of TeCl4 in polar solvents as well as in (TeCl3)AlCl4 (Krebs et al., 1971) and (TeCl3)Al[OC(CF3)3]4 (Engesser et al., 2012).

Magnesium dichloride, MgCl2, is readily soluble in THF and known to undergo complex formation with a number of Lewis acids including FeCl3, AlCl3, TiCl4, and MoOCl2. Isolated and well-defined complexes involve [Mg(THF)42-Cl)2 TiCl4] (Gordon and Wallbridge, 1984), [(THF)3 Mg(μ2-Cl)3 Mg(THF)3]TiCl5(THF) (Sobota et al., 1984a), [MgCl(THF)5]FeCl4·THF, [MgCl(THF)5]AlCl4·THF (Sobota et al., 1989), [Mg(THF)42-Cl)2 FeCl2] (Sobota et al., 1984b), [Mg(THF)6]MoOCl4(THF), and [(THF)3 Mg(μ2-Cl)3 Mg(THF)3]MoOCl4(THF) (Sobota et al., 1986).

We have now found that the reaction of TeCl4 with t-BuMgCl in THF, originally intended to give t-Bu2 Te (Jones and Sharma, 1983; Gedridge et al., 1991), proceeded with the formation of volatile isobutene (recognized by the characteristic smell) and produced after removal of almost all of the solvent a colorless solid, which was recrystallized from CH2 Cl2 to furnish a small crop of single crystals of the title compound Te2 Mg23-Cl2)(μ2-Cl4)Cl6(THF)4·CH2 Cl2 (1·CH2 Cl2). The molecular structure of 1 is shown in Figure 1. Selected bond lengths are collected in the caption.

It consists of a centrosymmetric tetranuclear structure that strongly resembles those of the diaryltellurium dichlorides (R2 Te)43-Cl2)(μ2-Cl4)Cl2 (II, R=4-MeC6 H4; Beckmann et al., 2003), 4-MeOC6 H4 (Chadha and Drake, 1984), and the Grignard reagent (EtMg)2 Mg23-Cl2)(μ2-Cl4)(THF)6 (III) (Scheme 1) (Toney and Stucky, 1971). The spatial arrangement of the Te atom is distorted octrahedral and defined by a Cl6 donor set. Like in the parent Te43-Cl4)Cl12 (I) (Buss and Krebs, 1970, 1971), there are three short Te-Cl bonds and three long Te-Cl bonds, which are associated with the terminal chlorine atoms Cl1, Cl2, and Cl3 [2.340(1), 2.385(1), and 2.384(1) Å], the two μ2-chlorine atoms Cl5 and Cl6 [2.6921(9) and 2.6909(9) Å], and the μ3-chlorine atom Cl4 [2.8545(9) Å], respectively. Thus, the structure contains a rare TeCl3- moiety. The spatial arrangement of the Mg atom is also distorted octrahedral and defined by an O2 Cl4 donor set. The two Mg-O bond lengths [2.049(3) and 2.035(3) Å] and the four Mg-Cl bond lengths, which are associated with the two μ2-chlorine atoms Cl5 and Cl6a [2.505(1) and 2.514(1) Å] and the two μ3-chlorine atoms Cl4 and Cl4 [2.595(1) and 2.567(1) Å], respectively, are very similar to those observed in (EtMg)2 Mg23-Cl2)(μ2-Cl4)(THF)6 (III) (Toney and Stucky, 1971), [(THF)3 Mg(μ2-Cl)3 Mg(THF)3]TiCl5(THF) (Sobota et al., 1984a), [MgCl(THF)5]FeCl4·THF, [MgCl(THF)5]AlCl4·THF (Sobota et al., 1989), [Mg(THF)42-Cl)2 FeCl2] (Sobota et al., 1984b), [Mg(THF)6]MoOCl4(THF), and [(THF)3 Mg(μ2-Cl)3 Mg(THF)3]MoOCl4(THF) (Sobota et al., 1986) respectively.

Figure 1 Molecular structure of Te2 Mg2(μ3-Cl2)(μ2-Cl4)Cl6·4 THF·CH2 Cl2 showing 30% probability ellipsoids and the crystallographic numbering scheme.Selected bond parameters [Å]: Te1-Cl1 2.340(1), Te1-Cl2 2.385(1), Te1-Cl3 2.384(1), Te1-Cl4 2.8545(9), Te1-Cl5 2.6921(9), Te1-Cl6 2.6909(9), Mg1-O1 2.049(3), Mg1-O2 2.035(3), Mg1-Cl4 2.595(1), Mg1-Cl4a 2.567(1), Mg1-Cl5 2.505(1), Mg1-Cl6a 2.514(1), Cl1-Te1-Cl2 93.32(5), Cl1-Te1-Cl3 92.78(5), Cl1-Te1-Cl4 167.53(4), Cl1-Te1-Cl5 90.93(4), Cl1-Te1-Cl6 91.16(4), Cl2-Te1-Cl3 90.05(4), Cl2-Te1-Cl4 95.29(4), Cl2-Te1-Cl5 175.68(4), Cl2-Te1-Cl6 90.07(4), Cl3-Te1-Cl4 96.21(4), Cl3-Te1-Cl5 88.97(4), Cl3-Te1-Cl6 176.04(4), Cl4-Te1-Cl5 80.64(3), Cl4-Te1-Cl6 79.83(2), Cl5-Te1-Cl6 90.63(3), O1-Mg1-O2 96.1(1), O1-Mg1-Cl4 174.74(9), O1-Mg1-Cl4a 92.61(8), O1-Mg1-Cl5 89.49(9), O1-Mg1-Cl6a 89.95(9), O2-Mg1-Cl5 93.48(8), O2-Mg1-Cl6a 89.14(8), O2-Mg1-Cl4 89.10(9), O2-Mg1-Cl4a 171.07(9), Cl4-Mg1-Cl5a 88.48(4), Cl4a-Mg1-Cl6a 88.97(4), Cl5-Mg1-Cl6a 177.36(6), Cl4-Mg1-Cl5 89.49(4), Cl4-Mg1-Cl6a 90.83(5), Cl4-Mg1-Cl4a 82.20(4).
Figure 1

Molecular structure of Te2 Mg23-Cl2)(μ2-Cl4)Cl6·4 THF·CH2 Cl2 showing 30% probability ellipsoids and the crystallographic numbering scheme.

Selected bond parameters [Å]: Te1-Cl1 2.340(1), Te1-Cl2 2.385(1), Te1-Cl3 2.384(1), Te1-Cl4 2.8545(9), Te1-Cl5 2.6921(9), Te1-Cl6 2.6909(9), Mg1-O1 2.049(3), Mg1-O2 2.035(3), Mg1-Cl4 2.595(1), Mg1-Cl4a 2.567(1), Mg1-Cl5 2.505(1), Mg1-Cl6a 2.514(1), Cl1-Te1-Cl2 93.32(5), Cl1-Te1-Cl3 92.78(5), Cl1-Te1-Cl4 167.53(4), Cl1-Te1-Cl5 90.93(4), Cl1-Te1-Cl6 91.16(4), Cl2-Te1-Cl3 90.05(4), Cl2-Te1-Cl4 95.29(4), Cl2-Te1-Cl5 175.68(4), Cl2-Te1-Cl6 90.07(4), Cl3-Te1-Cl4 96.21(4), Cl3-Te1-Cl5 88.97(4), Cl3-Te1-Cl6 176.04(4), Cl4-Te1-Cl5 80.64(3), Cl4-Te1-Cl6 79.83(2), Cl5-Te1-Cl6 90.63(3), O1-Mg1-O2 96.1(1), O1-Mg1-Cl4 174.74(9), O1-Mg1-Cl4a 92.61(8), O1-Mg1-Cl5 89.49(9), O1-Mg1-Cl6a 89.95(9), O2-Mg1-Cl5 93.48(8), O2-Mg1-Cl6a 89.14(8), O2-Mg1-Cl4 89.10(9), O2-Mg1-Cl4a 171.07(9), Cl4-Mg1-Cl5a 88.48(4), Cl4a-Mg1-Cl6a 88.97(4), Cl5-Mg1-Cl6a 177.36(6), Cl4-Mg1-Cl5 89.49(4), Cl4-Mg1-Cl6a 90.83(5), Cl4-Mg1-Cl4a 82.20(4).

Experimental

To a suspension of Mg turnings (134 mg, 5.5 mmol) in THF (25 mL), tert-butyl chloride (463 mg, 5.0 mmol) was slowly added via a syringe. After stirring overnight all volatile materials were removed invacuo. The resulting residue was extracted with hot CH2 Cl2. The solution was filtered and left to stand in a closed Schlenk tube. After 3 weeks, a small crop of pale yellow single crystals formed.

X-ray crystallography

Intensity data were collected on a STOE IPDS 2T diffractometer at 150 K with graphite-monochromated Mo-Kα (0.7107 Å) radiation. The structure was solved by direct methods and difference Fourier synthesis using SHELXS-97 and SHELXL-97 implemented in the program WinGX 2002 (Farrugia, 1999). Full-matrix least-squares refinements on F2 were performed using all data. All nonhydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were included in geometrically calculated positions using a riding model. Crystal and refinement data are collected in Table 1. Figures were created using DIAMOND (Brandenburg and Putz, 2006). Crystallographic data (excluding structure factors) for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC number 998857. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Table 1

Crystal data and structure refinement of Te2 Mg23-Cl2)(μ2-Cl4)Cl6·4 THF·CH2 Cl2.

FormulaC17 H34 Cl14 Mg2 O4 Te2
Formula weight, g mol-11102.56
Crystal systemMonoclinic
Crystal size, mm0.45×0.35×0.30
Space groupC2/c
a, Å16.8786(11)
b, Å12.1698(5)
c, Å20.2367(14)
α, °90.00
β, °110.930(5)
γ, °90.00
V, Å33882.5(4)
Z4
ρcalcd, mg m-31.886
T, K150
μ(Mo-Kα), mm-12.523
F(000)2136
θ range, deg2.71–25.02
Index ranges-19≤h≤20
-13≤k≤14
-24≤l≤24
No. of reflns collected13401
Completeness to θmax99.8%
No. indep. reflns3433
No. obsd reflns with (I>2σ(I))3064
No. refined param177
GooF (F2)1.034
R1 (F) (I>2σ(I))0.0287
wR2 (F2) (all data)0.0705
)max<0.001
Largest diff peak/hole, e Å–30.922/-0.691

Corresponding author: Jens Beckmann, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany; and Institut für Anorganische Chemie, Universität Bremen, Leobener Straße, D-28359 Bremen, Germany, e-mail:

References

Beckmann, J.; Dakternieks, D.; Duthie, A.; Smith, N. A. Secondary bonding in para-substituted diphenyltellurium dichlorides (p-XC6 H4)2 TeCl2 (X=H, Me, MeO) probed by 125Te MAS NMR spectroscopy. Crystal and molecular structure of (p-MeC6 H4)2 TeCl2. J. Organomet. Chem. 2003, 669, 149–153.Search in Google Scholar

Brandenburg, K.; Putz, H. DIAMOND V3.1d. Crystal Impact GbR, Bonn, Germany, 2006.Search in Google Scholar

Buss, B.; Krebs, B. Crystal structure of TeCl4: presence of tetramers in solid chalcogen(IV) halides. Angew. Chem. Int. Ed. 1970, 9, 463.Search in Google Scholar

Buss, B.; Krebs, B. The crystal structure of tellurium tetrachloride. Inorg. Chem. 1971, 10, 2795–2800.Search in Google Scholar

Chadha, R. K.; Drake, J. E. Structure of dichlorobis(p-methoxyphenyl)tellurium(IV), [TeCl2(C7 H7 O)2]. Acta Crystallogr. 1984, C40, 1349–1352.Search in Google Scholar

Engesser, T. A.; Hrobárik, P.; Trapp, N.; Eiden, P.; Scherer, H.; Kaupp, M.; Krossing, I. [TeX3]+ cations stabilized by the weakly coordinating [Al(ORF)4]- anion: FIR spectra, Raman spectra, and evaluation of an abnormal halogen dependence of the 125Te NMR chemical shifts. ChemPlusChem2012, 77, 643–651.Search in Google Scholar

Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr.1999, 32, 837–838.Search in Google Scholar

Gedridge Jr., R. W.; Higa, K. T.; Nissan, R. A. Syntheses and mechanistic studies of symmetric tetraorganotellurium(IV) (R4 Te) and diorganyltellurium(II) (R′2 Te) compounds (R=R′=Me, n-Bu, Me3 SiCH2, and CH2=CH; R′=t-Bu and Allyl). Organometallics1991, 10, 286–291.10.1021/om00047a062Search in Google Scholar

Gordon, D.; Wallbridge, M. G. H. Characterisation and solution properties of complexes involving magnesium chloride, a Lewis Base, and the tetrachlorides of titanium, zirconium and tin. Inorg. Chim. Acta1984, 88, 15–20.10.1016/S0020-1693(00)81864-2Search in Google Scholar

Jones, C. H. W.; Sharma, R. D. The preparation of di-t-butyl ditelluride and di-t-butyltelluride and the 125Te NMR and Mössbauer spectra of some dialkyl tellurides and ditellurides. J. Organomet. Chem. 1983, 255, 61–70.Search in Google Scholar

Krebs, B.; Buss, B.; Altena, D. Die Kristallstruktur von Trichlorotellur(IV)-tetraaluminat TeCl3+AlCl4-. Z. Anorg. Allg. Chem. 1971, 386, 257–369.Search in Google Scholar

Shlykov, S. A.; Giricheva, N. I.; Titov, A. V.; Szwak, M.; Lentz, D.; Girichev, G. V. The structures of tellurium(IV) halides in the gas phase and as solvated molecules. Dalton Trans. 2010, 39, 3245–3255.Search in Google Scholar

Sobota, P.; Utko, J.; Lis, T. Preparation and crystal structure of tri-μ-chloro-hexakis(tetrahydrofuran)dimagnesium(II) pentachloro(tetrahydrofuran)titanate(IV). J. Chem. Soc. Dalton Trans. 1984a, 2077–2079.Search in Google Scholar

Sobota, P.; Pluzinski, T.; Lis, T. Reaction between magnesium chloride and iron(III) chloride in tetrahydrofuran. The crystal structure of di-μ-chlorodichloroiron(II) tetrakis(tetrahydrofuran)magnesium(II). Polyhedron1984b, 3, 45–47.10.1016/S0277-5387(00)84710-5Search in Google Scholar

Sobota, P.; Pluzinski, T.; Lis, T. Reaction between [MgCl2(THF)2] and [MoOCl3(THF)2]. The crystal structures of [Mg(THF)6][MoOCl4(THF)]2 and [Mg2(μ-Cl)3(THF)6][MoOCl4(THF)]. Z. Anorg. Allg. Chem. 1986, 533, 215–224.Search in Google Scholar

Sobota, P.; Pluzinski, T.; Utko, J.; Lis, T. Evidence for the existence of the [MgCl(THF)5]+ cation. Crystal structures of [MgCl(THF)5][FeCl4]·THF and [MgCl(THF)5][AlCl4]·THF. Inorg. Chem. 1989, 28, 2217–2219.Search in Google Scholar

Toney, J.; Stucky, G. D. The stereochemistry of polynulcear compounds of the main group elements. [C2 H5 Mg2 Cl3(C4 H8 O)3]2, a tetrameric grignard reagent. J. Organomet. Chem.1971, 28, 5–20.Search in Google Scholar

Received: 2014-7-4
Accepted: 2014-8-14
Published Online: 2014-9-26
Published in Print: 2014-12-1

©2014 by De Gruyter

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 21.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mgmc-2014-0024/html
Scroll to top button