Startseite Implementing generative artificial intelligence technologies in language industry workflows – A competence perspective
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Implementing generative artificial intelligence technologies in language industry workflows – A competence perspective

  • Ralph Krüger ORCID logo EMAIL logo
Veröffentlicht/Copyright: 13. März 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article is concerned with the following question: Which competences are required by stakeholders who are tasked with implementing current generative artificial intelligence (AI) technologies (primarily in the form of uni- and multimodal large language models) in language industry workflows? To set the scene, the article first discusses briefly the ongoing AI saturation of the language industry. It then proceeds to discuss the concept of artificial intelligence literacy and shows how this concept has been operationalised for language industry contexts via a domain-specific AI literacy framework for translation, interpreting and specialised communication. In this context, the article also discusses potential AI literacy roles and competence levels that have been proposed in the literature and briefly sketches how these may be related to the domain-specific AI literacy framework. Then, the article zooms in on the implementation dimension of the framework. For each subdimension of this dimension, it proposes a draft competence descriptor and discusses in detail the relevant aspects of generative AI implementation subsumed under these subdimensions from a competence perspective. The article concludes with a brief outlook on how domain-specific AI literacy may help stakeholders navigate the further evolution of the language industry under the impact of high-performing AI technologies.

References

Albarino, Seyma (2024): Translation companies accelerating adoption of large language models, ALC survey. Slator. https://slator.com/translation-companies-accelerating-adoption-large-language-models-alc-survey/ (6 December 2024).Suche in Google Scholar

Alonso, Elisa/Vieira, Lucas Nunes (2021): The impact of technology on the role of the translator in globalized production workflows. In: Bielsa, Esperança/Kapsaskis, Dionysios (Eds.): The Routledge handbook of translation and globalization. London: Routledge, 391–405. https://doi.org/10.4324/9781003121848.10.4324/9781003121848-32Suche in Google Scholar

Angelone, Erik (2022): Weaving adaptive expertise into translator training. In: Massey, Gary/Huertas-Barros, Elsa/Katan, David (Eds.): The human translator in the 2020s. London: Routledge, 60–73. https://doi.org/10.4324/9781003223344.10.4324/9781003223344-5Suche in Google Scholar

Ayvazyan, Nune/Torres-Simón, Ester/Pym, Anthony (2024): What kind of translation literacy will be automation-resistant? In: Peng, Yuhong/Huang, Huihui/Li, Defeng (Eds.): New advances in translation technology. Applications and pedagogy. Singapore: Springer, 121–140. https://doi.org/10.1007/978-981-97-2958-6_7.10.1007/978-981-97-2958-6_7Suche in Google Scholar

Bauman, Zygmunt (2000): Liquid modernity. Cambridge: Polity Press.Suche in Google Scholar

Baumgarten, Stefan (2024): Welcome to the translation machine! Translation labour in times of techno-triumphalism. In: Jalalian Daghigh, Ali/Shuttleworth, Mark (Eds.): Translation and neoliberalism. Cham: Springer, 169–185. https://doi.org/10.1007/978-3-031-73830-2_8.10.1007/978-3-031-73830-2_8Suche in Google Scholar

Bipartisan House Task Force on Artificial Intelligence (2024): Bipartisan house task force report on artificial intelligence. U. S. House of Representatives. https://www.speaker.gov/wp-content/uploads/2024/12/AI-Task-Force-Report-FINAL.pdf (5 January 2025).Suche in Google Scholar

Briva-Iglesias, Vicent/O’Brien, Sharon (2022): The language engineer: A transversal, emerging role for the automation age. Quaderns de Filologia: Estudis Lingüístics 27, 17–48. http://dx.doi.org/10.7203/qf.0.24622.10.7203/qf.0.24622Suche in Google Scholar

Bubeck, Sébastien/Chandrasekaran, Varun/Eldan, Ronen/Gehrke, Johannes/Horvitz, Eric/Kamar, Ece/Lee, Peter/Lee, Yin Tat/Li, Yuanzhi/Lundberg, Scott/Nori, Harsha/Palangi, Hamid/Tulio Ribeiro, Marco/Zhang, Yi (2023): Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv. https://doi.org/10.48550/arXiv.2303.12712.Suche in Google Scholar

Canfora, Carmen/Nitzke, Jean (submitted for publication): Risiken in digitalen Übersetzungsprozessen. In: Czulo, Oliver; Hoberg, Felix; Kappus, Martin (Eds.): Digitale Translatologie. Berlin: Language Science Press.Suche in Google Scholar

Canfora, Carmen/Ottmann, Angelika (2020): Risks in neural machine translation. Translation Spaces 9(1), 58–77. https://doi.org/10.1075/ts.00021.can.10.1075/ts.00021.canSuche in Google Scholar

Carreira, Oliver (2024): Bad business practices in the language services industry. Translation Spaces Ahead-of-Print, 1–21. https://doi.org/10.1075/ts.23044.car.10.1075/ts.23044.carSuche in Google Scholar

Christensen, Tina Paulsen/Bundgaard, Kristine/Schjoldager, Anne/Dam-Jensen, Helle (2022): What motor vehicles and translation machines have in common. A first step towards a translation automation taxonomy. Perspectives 30(1), 19–38. https://doi.org/10.1080/0907676X.2021.1900307.10.1080/0907676X.2021.1900307Suche in Google Scholar

Christensen, Tina Paulsen/Bundgaard, Kristine/Flanagan, Marian (2024): Psychological consequences of the digital transformation of the translation industry: An exploratory study of technostress among Danish certified translators. Revista Tradumàtica 22, 187–206. https://doi.org/10.5565/rev/tradumatica.366.10.5565/rev/tradumatica.366Suche in Google Scholar

CSA Research (2024): The language sector slowdown. A multifaceted outlook. CSA Research Blog. https://csa-research.com/Blogs-Events/Blog/The-Language-Sector-Slowdown-A-Multifaceted-Outlook (2 January 2025).Suche in Google Scholar

Council of the European Union (2017): Council recommendation of 22 May 2017 on the European Qualifications Framework for lifelong learning and repealing the recommendation of the European Parliament and of the Council of 23 April 2008 on the establishment of the European Qualifications Framework for lifelong learning. Official Journal of the European Union. https://europass.europa.eu/system/files/2020-05/Legal%20text-EN.pdf (24 January 2025).Suche in Google Scholar

Ehrensberger-Dow, Maureen (2017): An ergonomic perspective of translation. In: Schwieter, John W./Ferreira, Aline (Eds.): The handbook of translation and cognition. Hoboken: Wiley, 332–349. https://doi.org/10.1002/9781119241485.ch18.10.1002/9781119241485.ch18Suche in Google Scholar

Ehrensberger-Dow, Maureen/Delorme Benites, Alice/Lehr, Caroline (2023): A new role for translators and trainers: MT literacy consultants. The Interpreter and Translator Trainer 17(3), 393–411. https://doi.org/10.1080/1750399X.2023.2237328.10.1080/1750399X.2023.2237328Suche in Google Scholar

Eloundou, Tyna/Manning, Sam/Mishkin, Pamela/Rock, Daniel (2023): GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv. https://doi.org/10.48550/arXiv.2303.10130.Suche in Google Scholar

EMT (2022): European Master’s in Translation competence framework 2022. https://ec.europa.eu/info/sites/default/files/about_the_european_commission/service_standards_and_principles/documents/emt_competence_fwk_2022_en.pdf (24 January 2025).Suche in Google Scholar

Esselink, Bert (2000): A practical guide to localization. Amsterdam: Benjamins.10.1075/liwd.4Suche in Google Scholar

EU Artificial Intelligence Act (2024a): EU Artificial Intelligence Act. European Union. https://artificialintelligenceact.eu/ (6 January 2025).Suche in Google Scholar

EU Artificial Intelligence Act (2024b): EU Artificial Intelligence Act Chapter I (General Provisions) Article 3 (Definitions). Paragraph 63. European Union. https://artificialintelligenceact.eu/article/4/ (6 December 2024).Suche in Google Scholar

EU Artificial Intelligence Act (2024c): EU Artificial Intelligence Act Chapter I (General Provisions) Article 4 (AI Literacy). European Union. https://artificialintelligenceact.eu/article/4/ (6 December 2024).Suche in Google Scholar

EU Artificial Intelligence Act (2024d): High-level summary of the AI Act. European Union. https://artificialintelligenceact.eu/high-level-summary/ (6 January 2025).Suche in Google Scholar

EU Artificial Intelligence Act (2024e): EU Artificial Intelligence Act Recital 53 (Supplementing human activity and pattern recognition). European Union. https://ai-act-law.eu/recital/53/ (6 January 2025).Suche in Google Scholar

Fırat, Gökhan/Gough, Joanna/Moorkens, Joss (2024): Translators in the platform economy: A decent work perspective. Perspectives 32(2), 422–440. https://doi.org/10.1080/0907676X.2024.2323213.10.1080/0907676X.2024.2323213Suche in Google Scholar

Fraunhofer IAIS (2024): OpenGPT-X: Teuken-7B. Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme. https://www.iais.fraunhofer.de/de/geschaeftsfelder/speech-technologies/conversational-ai/opengpt-x.html (4 January 2025).Suche in Google Scholar

GALA (2024): AI & automation barometer report 2024. GALA. https://www.gala-global.org/knowledge-center/professional-development/articles/gala-business-barometer-ai-automation-report (8 December 2024).Suche in Google Scholar

Ghazvininejad, Marjan/Gonen, Hila/Zettlemoyer, Luke (2023): Dictionary-based phrase-level prompting of large language models for machine translation. arXiv. https://doi.org/10.48550/arXiv.2302.07856.Suche in Google Scholar

Herbert, Sarah/do Carmo, Félix/Gough, Joanna/Carnegie-Brown, Anu (2023): From responsibilities to responsibility: A study on the effects of translation workflow automation. Journal of Specialised Translation 40, 9–35. https://jostrans.soap2.ch/issue40/art_herbert.pdf (11 January 2025).Suche in Google Scholar

Heuer-James, Jens (2024): Current legal developments relevant for technical communication. Presentation at the 20240 annual tekom conference, Stuttgart, Germany, 6 November 2024.Suche in Google Scholar

Hirsch-Kreinsen, Hartmut (2015/2018): Einleitung: Digitalisierung industrieller Arbeit. In: Hirsch-Kreinsen, Hartmut/Ittermann, Peter/Niehaus, Jonathan (Eds.): Digitalisierung industrieller Arbeit. Die Vision Industrie 4.0 und ihre sozialen Herausforderungen. 2nd, revised and extended edition. Baden-Baden: Nomos, 13–32. https://doi.org/10.5771/9783845283340.10.5771/9783845283340-12Suche in Google Scholar

ISO 17100 (2015): Translation services – Requirements for translation services. ISO Copyright Office.Suche in Google Scholar

Jiménez-Crespo, Miguel A. (2023): Augmentation and translation crowdsourcing. Are collaborative translators’ minds truly “augmented”? Translation, Cognition & Behaviour Ahead-of-Print, 1–20. https://doi.org/10.1075/tcb.00079.jim.10.1075/tcb.00079.jimSuche in Google Scholar

Jiménez-Crespo, Miguel A. (2024): Professional translators’ attitudes towards control and autonomy in the human-centered AI era: Presenting a survey study. In: Orăsan, Constantin/Ranasinghe, Tharindu/Corpas Pastor, Gloria/Mitkov, Ruslan/Kunilovskaya, Maria/Sosoni, Vilelmini/Escribe, Marie (Eds.): Proceedings of the New Trends in Translation and Technology conference – NeTTT 2024, 91–98. https://doi.org/10.26615/issn.2815–4711.2024_008.10.26615/issn.2815-4711.2024_008Suche in Google Scholar

Kocmi, Tom/Federmann, Christian (2023): Large language models are state-of-the-art evaluators of translation quality. In: Nurminen, Mary/Brenner, Judith/Koponen, Maarit/Latomaa, Sirkku/Mikhailov, Mikhail/Schierl, Frederike/Ranasinghe, Tharindu/Vanmassenhove, Eva/Alvarez Vidal, Sergi/Aranberri, Nora/Nunziatini, Mara/Parra Escartìn, Carla/Forcada, Mikel/Popovic, Maja/Scarton, Carolina/Moniz, Helena (Eds.): Proceedings of the 24th annual conference of the European Association for Machine Translation (EAMT 2023). European Association for Machine Translation, 193–203. https://events.tuni.fi/uploads/2023/06/a52469c0-proceedings-eamt2023.pdf (5 January 2025).Suche in Google Scholar

Krüger, Ralph (2018): Technologieinduzierte Verschiebungen in der Tektonik der Translationskompetenz. trans-kom 11(1), 101–137. http://www.trans-kom.eu/bd11nr01/trans-kom_11_01_06_Krueger_Tektonik.20180712.pdf (8 December 2024).Suche in Google Scholar

Krüger, Ralph (2019a): Augmented Translation – eine Bestandsaufnahme des rechnergestützten Fachübersetzungsprozesses. trans-kom 12(1), 142–181. https://www.trans-kom.eu/bd12nr01/trans-kom_12_01_10_Krueger_Augmented.20190816.pdf (30 December 2024).Suche in Google Scholar

Krüger, Ralph (2019b): A model for measuring the usability of computer-assisted translation tools. In: Jüngst, Heike E./Link, Lisa/Schubert, Klaus/Zehrer, Christiane (Eds.): Challenging boundaries – New approaches to specialized communication. Berlin: Frank & Timme, 93–117.Suche in Google Scholar

Krüger, Ralph (2022): Integrating professional machine translation literacy and data literacy. Lebende Sprachen 67(2), 247–282. https://doi.org/10.1515/les-2022–1022.10.1515/les-2022-1022Suche in Google Scholar

Krüger, Ralph (2024): Outline of an artificial intelligence literacy framework for translation, interpreting and specialised communication. Lublin Studies in Modern Languages and Literature 48(3), 11–23. http://dx.doi.org/10.17951/lsmll.2024.48.3.11–23.10.17951/lsmll.2024.48.3.11-23Suche in Google Scholar

Krüger, Ralph (forthcoming): An artificial intelligence literacy framework for translation, interpreting and specialised communication. In: Petrova, Alena/Prandi, Bianca/Schmidhofer, Astrid (Eds.): Der Einfluss neuer Technologien auf die Ausbildung von Translatoren/The influence of new technologies on translator and interpreter education. Berlin: Lang.Suche in Google Scholar

Krüger, Ralph/Hackenbuchner, Janiça (2022): Outline of a didactic framework for combined data literacy and machine translation literacy teaching. Current Trends in Translation Teaching and Learning E 2022, 375–432. http://www.cttl.org/uploads/5/2/4/3/5243866/cttl202211.pdf (23 January 2025).10.51287/cttl202211Suche in Google Scholar

Krüger, Ralph/Hackenbuchner, Janiça (2024): A competence matrix for machine translation-oriented data literacy teaching. Target 36(2), 245–275. https://doi.org/10.1075/target.22127.kru.Suche in Google Scholar

LangChain (2024): Agents. LangChain documentation. https://python.langchain.com/docs/concepts/agents/ (2 January 2025).Suche in Google Scholar

Linklaters (2024): Korea’s won? South Korea’s AI Basic Act: Asia’s first comprehensive AI legislation. Linklaters. https://techinsights.linklaters.com/post/102js56/koreas-wonsouth-koreas-ai-basic-act-asias-first-comprehensive-ai-legislatio (5 January 2025).Suche in Google Scholar

Lommel, Arle (2024): The rise of large language models informed by not so large corpora of training data. Digital Translation 11(1), 73–84. https://doi.org/10.1075/dt.24006.lom.10.1075/dt.24006.lomSuche in Google Scholar

Long, Duri/Magerko, Brian (2020): What is AI literacy? Competencies and design considerations. In: Bernhaupt, Regina/Mueller, Florian/Verweij, David/Andres, Josh (Eds.): CHI '20: Proceedings of the 2020 CHI conference on human factors in computing systems. Association for Computing Machinery, 1–16. https://doi.org/10.1145/3313831.3376727.10.1145/3313831.3376727Suche in Google Scholar

Lucchi, Nicola (2023): ChatGPT: A study on copyright challenges for generative artificial intelligence systems. European Journal of Risk Regulation 15(3), 602–624. https://doi.org/10.1017/err.2023.59.10.1017/err.2023.59Suche in Google Scholar

Massion, François (2024): Terminology in the age of AI: The transformation of terminology theory and practice. Journal of Translation Studies 4(1), 67–94. https://doi.org/10.3726/JTS012024.04.10.3726/JTS012024.04Suche in Google Scholar

McKinsey (2024): The state of AI in early 2024: Gen AI adoption spikes and starts to generate value. McKinsey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai#/ (5 January 2025).Suche in Google Scholar

Mollick, Ethan (2024): Co-intelligence. Living and working with AI. London: Allen.Suche in Google Scholar

Moorkens, Joss (2020): “A tiny cog in a large machine”. Digital Taylorism in the translation industry. Translation Spaces 9(1), 12–34. https://doi.org/10.1075/ts.00019.moo.10.1075/ts.00019.mooSuche in Google Scholar

Moorkens, Joss (2022): Ethics and machine translation. In: Kenny, Dorothy (Ed.): Machine translation for everyone. Empowering users in the age of artificial intelligence. Berlin: Language Science Press, 121–140. https://doi.org/10.5281/zenodo.6653406.Suche in Google Scholar

Moorkens, Joss (2024): ‘I am not a number’: On quantification and algorithmic norms in translation. Perspectives 32(3), 477–492. https://doi.org/10.1080/0907676X.2023.2278536.10.1080/0907676X.2023.2278536Suche in Google Scholar

Moorkens, Joss/Guerberof Arenas, Ana (2024): Artificial intelligence, automation and the language industry. In: Massey, Gary/Ehrensberger-Dow, Maureen/Angelone, Erik (Eds.): Handbook of the language industry. Berlin/Boston: De Gruyter Mouton, 71–97. https://doi.org/10.1515/9783110716047-005.10.1515/9783110716047-005Suche in Google Scholar

Moorkens, Joss/Castilho, Sheila/Gaspari, Federico/Toral, Antonio/Popović, Maja (2024): Proposal for a triple bottom line for translation automation and sustainability: An editorial position paper. Journal of Specialised Translation 41, 2–25. https://doi.org/10.26034/cm.jostrans.2024.4706.10.26034/cm.jostrans.2024.4706Suche in Google Scholar

Nitzke, Jean/Hansen-Schirra, Silvia/Canfora, Carmen (2019): Risk management and post-editing competence. Journal of Specialised Translation 31, 239–259. https://jostrans.soap2.ch/issue31/art_nitzke.php (11 December 2024).Suche in Google Scholar

Ong, Isaac/Almahairi, Amjad/Wu, Vincent/Chiang, Wei-Lin/Wu, Tianhao/Gonzalez, Joseph E./Kadous, M Waleed/Stoica, Ion (2024): RouteLLM: Learning to route LLMs with preference data. arXiv. https://arxiv.org/html/2406.18665v1 (12 December 2024).Suche in Google Scholar

OpenAI (2020): Language distribution in GPT-3’s training dataset. GitHub repository. https://github.com/openai/gpt-3/blob/master/dataset_statistics/languages_by_character_count.csv (23 January 2025).Suche in Google Scholar

OpenAI (2025a): Pricing. OpenAI. https://openai.com/api/pricing/ (4 January 2025).Suche in Google Scholar

OpenAI (2025b): Privacy policy. OpenAI. https://openai.com/policies/row-privacy-policy/ (9 January 2025).Suche in Google Scholar

Pinski, Marc/Hofmann, Thomas/Benlian, Alexander (2024): AI Literacy for the top management: An upper echelons perspective on corporate AI orientation and implementation ability. Electronic Markets 34(24), 1–23. https://doi.org/10.1007/s12525-024-00707–1.10.1007/s12525-024-00707-1Suche in Google Scholar

Raunak, Vikas/Sharaf, Amr/Wang, Yiren/Awadalla, Hany/Menezes, Arul (2023): Leveraging GPT-4 for automatic translation post-editing. In: Bouamor, Houda/Pino, Juan/Bali, Kalika (Eds.): Findings of the Association for Computational Linguistics: EMNLP 2023. Association for Computational Linguistics, 12009-12024. https://doi.org/10.18653/v1/2023.findings-emnlp.804.10.18653/v1/2023.findings-emnlp.804Suche in Google Scholar

Robinson, Nathaniel/Ogayo, Perez/Mortensen, David R./Neubig, Graham (2023): ChatGPT MT: Competitive for high- (but not low-) resource languages. In: Koehn, Philipp/Haddow, Barry/Kocmi, Tom/Monz, Christof (Eds.): Proceedings of the eighth conference on machine translation. Association for Computational Linguistics, 392–418. https://doi.org/10.18653/v1/2023.wmt-1.40.Suche in Google Scholar

Salesforce (2023). More than half of generative AI adopters use unapproved tools at work. https://www.salesforce.com/news/stories/ai-at-work-research/ (12 December 2024).Suche in Google Scholar

Sánchez-Gijón, Pilar/Palenzuela-Badiola, Leire (2023): Analysis and evaluation of ChatGPT induced HCI shifts in the digital translation process. In: Ořasan, Constantin/Mitkov, Ruslan/Pastor, Gloria Corpas/Monti, Johanna (Eds.): Proceedings of the international conference on Human-informed Translation and Interpreting Technology (HiT-IT 2023), 227–267. https://doi.org/10.26615/issn.2683–0078.2023_021.10.26615/issn.2683-0078.2023_021Suche in Google Scholar

Sandrini, Peter (2022): “It’s the economy, stupid” Discussing the translator’s business against the background of a changing techno-economic landscape. Translation Matters 4(2), 49–62. http://dx.doi.org/10.21747/21844585/tm4_2a4.10.21747/21844585/tm4_2a4Suche in Google Scholar

Schüller, Katharina/Rampelt, Florian/Koch, Henning/Schleiss, Johannes (2023): Better ready than just aware: Data and AI Literacy as an enabler for informed decision making in the data age. In: Klein, Maike/Krupka, Daniel/Winter, Cornelia/Wohlgemuth, Volker (Eds.): INFORMATIK 2023, Lecture Notes in Informatics (LNI). Bonn: Gesellschaft für Informatik, 425–430. https://doi.org/10.18420/inf2023_49.Suche in Google Scholar

Slator (2022): Slator machine translation expert-in-the-loop report. Slator. https://slator.com/machine-translation-expert-in-the-loop-report/ (2 January 2025).Suche in Google Scholar

The White House (2023): Executive order on the safe, secure, and trustworthy development and use of artificial intelligence. The White House. https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/ (5 January 2025).Suche in Google Scholar

Translated (2023): About Translated’s fair rate policy. Translated. https://translated.com/fair-rate-policy (2 January 2025). Suche in Google Scholar

Translated (n. d.): This is the speed at which we are approaching singularity in AI. Translated. https://translated.com/speed-to-singularity (3 January 2025).Suche in Google Scholar

Vieira, Inacio/Allred, Will/Lankford, Séamus/Castilho, Sheila/Way, Andy (2024): How much data is enough data? Fine-tuning large language models for in-house translation: Performance evaluation across multiple dataset sizes. In: Knowles, Rebecca/Eriguchi, Akiko/Goel, Shivali (Eds.): Proceedings of the 16th conference of the Association for Machine Translation in the Americas (Volume 1: Research track). Association for Machine Translation in the Americas, 236–249. https://aclanthology.org/2024.amta-research.20/ (2 January 2025).Suche in Google Scholar

Vieira, Lucas Nunes (2018): Automation anxiety and translators. Translation Studies 13(1), 1–21. https://doi.org/10.1080/14781700.2018.1543613.10.1080/14781700.2018.1543613Suche in Google Scholar

Vieira, Lucas Nunes (2020): Post-editing of machine translation. In: O’Hagan, Minako (Ed.): The Routledge handbook of translation and technology. London: Routledge, 319–335. https://doi.org/10.4324/9781315311258.10.4324/9781315311258-19Suche in Google Scholar

Wu, Minghao/Yuan, Yulin/Haffari, Gholamreza/Wang, Longyue (2024): (Perhaps) beyond human translation: Harnessing multi-agent collaboration for translating ultra-long-literary texts. arXiv. https://doi.org/10.48550/arXiv.2405.11804.Suche in Google Scholar

Yan, Jianhao/Yan, Pingchuan/Chen, Yulong/Li, Judy/Zhu, Xianchao/Zhang, Yue (2024): GPT-4 vs. human translators: A comprehensive evaluation of translation quality across languages, domains, and expertise levels. arXiv. https://doi.org/10.48550/arXiv.2407.03658.Suche in Google Scholar

Published Online: 2025-03-13
Published in Print: 2025-05-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/les-2025-0016/html
Button zum nach oben scrollen