Startseite A parallel cross-connection recovery scheme for dual link failure in elastic optical networks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A parallel cross-connection recovery scheme for dual link failure in elastic optical networks

  • Dinesh Kumar EMAIL logo , Rajiv Kumar und Neeru Sharma
Veröffentlicht/Copyright: 26. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we proposed a fast recovery strategy for a dual link failure (DLF) in elastic optical network (EON). The EON is a promising solution to meet the next generation higher bandwidth demand. The survivability of high speed network is very crucial. As the network size increases the probability of the DLF and node failure also increases. Here, we proposed a parallel cross connection backup recovery strategy for DLF in the network. The average bandwidth blocking probability (BBP), bandwidth provisioning ratio (BPR), and recovery time (RT) for our proposed Intermediate node cross-connect backup for shared path protection (INCB-SPP) for ARPANET are 0.38, 2.71, 4.68 ms, and for DPP 0.70, 6.02, 8.71 ms and for SPP 0.40, 2.87, and 16.33 ms respectively. The average BBP, BPR, and RT of INCB-SPP for COST239 are 0.01, 1.71, 3.79 ms and for DPP are 0.39, 3.50, 8.20 ms and SPP are 0.04, 1.75, and 12.47 ms respectively. Hence, the proposed strategy shows lower BBP, fast connection recovery, and BPR when compared with the existing shared path protection (SPP) and dedicated path protection (DPP) approaches. Simulation is performed on ARPANET and COST239 topology networks.


Corresponding author: Dinesh Kumar, Department of Electronics & Communication Engineering, Jaypee University of Information Technology, Waknaghat, Solan, HP, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cisco, Jose S. Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017-2022 white paper. CA, USA; 2019. p. 3–5. [Internet]. Available from: http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf.Suche in Google Scholar

2. Cisco. Cisco annual internet report (2018–2023) Cisco; 2020: 1–41 p. [Internet]. Available from: http://grs.cisco.com/grsx/cust/grsCustomerSurvey.html?SurveyCode=4153&ad_id=US-BN-SEC-M-CISCOASECURITYRPT-ENT&KeyCode=000112137.Suche in Google Scholar

3. Bao, NH, Sahoo, S, Kuang, M, Zhang, ZZ. Adaptive path splitting based survivable virtual network embedding in elastic optical networks. Opt Fiber Technol 2020;54:102084. https://doi.org/10.1016/j.yofte.2019.102084.Suche in Google Scholar

4. Yadav, DS, Rana, S, Prakash, S. Optical Fiber Technology Hybrid connection algorithm : a strategy for efficient restoration in WDM optical networks. Opt Fiber Technol 2010;16:90–9. https://doi.org/10.1016/j.yofte.2009.12.002.Suche in Google Scholar

5. Ellis, AD, Mac Suibhne, N, Saad, D, Payne, DN. Communication networks beyond the capacity crunch. Philos Trans R Soc A Math Phys Eng Sci 2016;374:1–12. https://doi.org/10.1098/rsta.2015.0191.Suche in Google Scholar PubMed PubMed Central

6. Gerstel, O. Elastic optical Networking : a new dawn for the optical layer ? IEEE Commun Mag 2012;50:s12–20. https://doi.org/10.1109/mcom.2012.6146481.Suche in Google Scholar

7. Saleh, AAM, Simmons, JM. All-optical networking V evolution, benefits, challenges, and future vision 2012;100:1105–17. https://doi.org/10.1109/JPROC.2011.2182589.Suche in Google Scholar

8. Dupas, A, Layec, P, Dutisseuil, E, Belotti, S, Bigo, S, Salas, EH, et al.. Elastic optical interface with variable baudrate: architecture and proof-of-concept. J Opt Commun Netw 2017;9:A170–5. https://doi.org/10.1364/jocn.9.00a170.Suche in Google Scholar

9. Yadav, DS, Babu, S, Manoj, BS. Quasi Path Restoration: a post-failure recovery scheme over pre-allocated backup resource for elastic optical networks. Opt Fiber Technol 2018;41:139–54. https://doi.org/10.1016/j.yofte.2018.01.011.Suche in Google Scholar

10. Jinno, M. Roles and benefits of elastic optical networks in beyond 100-Gb/s era. In: 42nd European Conference on Optical Communication. ECOC 2016. Düsseldorf, Germany; 2016:1–3 pp.Suche in Google Scholar

11. Klinkowski, M, Walkowiak, K. On the advantages of elastic optical networks for provisioning of cloud computing traffic. IEEE Netw 2013;27:44–51. https://doi.org/10.1109/mnet.2013.6678926.Suche in Google Scholar

12. Mitra, PP, Stark, JB. Nonlinear limits to the information capacity of optical fibre communications. Nature 2001;411:1027–30. https://doi.org/10.1038/35082518.Suche in Google Scholar PubMed

13. Ran, Y. Considerations and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Commun Mag 2011;49:44–7. https://doi.org/10.1109/mcom.2011.5681013.Suche in Google Scholar

14. Portela, T, Monteiro, ME, Cavalcante, JRA, Celestino, J, Patel, A. An extended software defined optical networks slicing architecture. Comput Stand Interfac 2020;70:103428. https://doi.org/10.1016/j.csi.2020.103428.Suche in Google Scholar

15. Batham, D, Yadav, DS. HPDST: holding pathlength domain scheduled traffic strategy for multi-domain optical networks. Optik (Stuttg) 2020;222:165145. https://doi.org/10.1016/j.ijleo.2020.165145.Suche in Google Scholar

16. Batham, D, Singh, D, Prakash, S. Optical Fiber Technology Least loaded and route fragmentation aware RSA strategies for elastic optical networks. Opt Fiber Technol 2017;39:95–108. https://doi.org/10.1016/j.yofte.2017.10.003.Suche in Google Scholar

17. Batham, D, Singh, D, Shashi, Y. Survivability using traffic balancing and backup resource reservation in multi – domain optical networks. Int J Commun Syst 2018;31:1–22. https://doi.org/10.1002/dac.3786.Suche in Google Scholar

18. Wang, C, Shen, G, Bose, SK. Distance adaptive dynamic routing and spectrum allocation in elastic optical networks with shared backup path protection. J Lightwave Technol 2015;33:2955–64.10.1364/OFC.2015.W1I.7Suche in Google Scholar

19. Shu, L, Yu, Z, Wan, Z, Zhang, J, Hu, S, Xu, K. Dual-stage soft failure detection and identification for low-margin elastic optical network by exploiting digital spectrum information. J Lightwave Technol 2020;38:2669–79. https://doi.org/10.1109/jlt.2019.2947562.Suche in Google Scholar

20. Sivakumar, M, Sivalingam, KM. On surviving dual-link failures in path protected optical WDM mesh networks. Opt Switch Netw 2006;3:71–88. https://doi.org/10.1016/j.osn.2006.04.004.Suche in Google Scholar

21. Sasithong, P, Quynh, LQ, Saengudomlert, P, Vanichchanunt, P, Hai, NH, Wuttisittikulkij, L. Maximizing double-link failure recovery of over-dimensioned optical mesh networks. Opt Switch Netw 2020:36:100541. https://doi.org/10.1016/j.osn.2019.100541.Suche in Google Scholar

22. Jinno, M, Takara, H, Kozicki, B, Tsukishima, Y, Sone, Y, Matsuoka, S. Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun Mag 2009;47:66–73. https://doi.org/10.1109/mcom.2009.5307468.Suche in Google Scholar

23. Mohan, N, Wason, A, Sandhu, PS. Optik ACO based single link failure recovery in all optical networks. Optik 2016;127:8469–74. https://doi.org/10.1016/j.ijleo.2016.06.058.Suche in Google Scholar

24. Gong, L, Zhou, X, Liu, X, Zhao, W, Lu, W, Zhu, Z. Efficient resource allocation for all-optical multicasting over spectrum-sliced elastic optical networks. J Opt Commun Netw 2013;5:836–47. https://doi.org/10.1364/jocn.5.000836.Suche in Google Scholar

25. Jafari-Beyrami, M, Ghaffarpour Rahbar, A, Hosseini, S. On-demand fragmentation-aware spectrum allocation in space division multiplexed elastic optical networks with minimized crosstalk and multipath routing. Comput Network 2020:181:107531. https://doi.org/10.1016/j.comnet.2020.107531.Suche in Google Scholar

26. Klonidis, D, Cugini, F, Gerstel, O, Jinno, M, Lopez, V, Palkopoulou, E, et al.. Spectrally and spatially flexible optical network planning and operations. IEEE Commun Mag 2015;53:69–78. https://doi.org/10.1109/mcom.2015.7045393.Suche in Google Scholar

27. Liu, H, Li, R, Chen, Y, Wang, X. Resource efficiency improved approach for shared path protection in EONs. Photonic Netw Commun 2017;33:19–25. https://doi.org/10.1007/s11107-016-0612-9.Suche in Google Scholar

28. Ruan, L, Zheng, Y. Dynamic survivable multipath routing and spectrum allocation in OFDM-based flexible optical networks. J Opt Commun Netw 2014;6:77–85. https://doi.org/10.1364/jocn.6.000077.Suche in Google Scholar

29. Yadav, DS, Chakraborty, A, Manoj, BS. Optical fiber technology a multi-backup path protection scheme for survivability in elastic optical networks. Opt Fiber Technol 2016;30:167–75. https://doi.org/10.1016/j.yofte.2016.05.003.Suche in Google Scholar

30. Ji, F, Chen, X, Lu, W, Rodrigues, JJPC, Zhu, Z. Dynamic p-cycle protection in spectrum-sliced elastic optical networks. J Lightwave Technol 2014;32:1190–9. https://doi.org/10.1109/jlt.2014.2300337.Suche in Google Scholar

31. Yang, H, Zhu, X, Bai, W, Zhao, Y, Zhang, J, Liu, Z, et al.. Survivable VON mapping with ambiguity similitude for differentiable maximum shared capacity in elastic optical networks. Opt Fiber Technol 2016;31:138–46. https://doi.org/10.1016/j.yofte.2016.07.002.Suche in Google Scholar

32. Cai, A, Fan, Z, Xu, K, Zukerman, M, Chan, CK. Elastic versus WDM networks with dedicated multicast protection. J Opt Soc Am 2017;9:921–33. https://doi.org/10.1364/jocn.9.000921.Suche in Google Scholar

33. Tarhan, A. Shared path protection for distance adaptive elastic optical networks under dynamic traffic. In: IEEE Conf 2013;62–7 pp. https://doi.org/10.1109/ICUMT.2013.6798405.Suche in Google Scholar

34. Klinkowski, M, Walkowiak, K. Offline RSA algorithms for elastic optical networks with dedicated path protection consideration. In: Int Congr Ultra Mod Telecommun Control Syst Work 2012;670–6 pp. https://doi.org/10.1109/ICUMT.2012.6459751.Suche in Google Scholar

35. Liu, H, Zhang, M, Yi, P, Chen, Y. Shared path protection through reconstructing sharable bandwidth based on spectrum segmentation for elastic optical networks. Opt Fiber Technol 2016;32:88–95. https://doi.org/10.1016/j.yofte.2016.10.001.Suche in Google Scholar

36. Chen, B, Zhang, J, Zhao, Y, Chen, H, Huang, S, Gu, W, et al.. Minimized spectral resource consumption with rescaled failure probability constraint in flexible bandwidth optical networks. J Opt Soc Am 2013;5:980–93.10.1364/JOCN.5.000980Suche in Google Scholar

37. Chen, B, Zhang, J, Zhao, Y, Jue, JP, Liu, J, Huang, S, et al.. Minimum spectrum block consumption for shared-path protection with joint failure probability in flexible bandwidth optical networks. Opt Switch Netw 2014;13:49–62.10.1016/j.osn.2014.01.001Suche in Google Scholar

38. Chen, X, Tornatore, M, Zhu, S, Ji, F, Zhou, W, Chen, C, et al.. Flexible availability-aware differentiated protection in software-defined elastic optical networks. J Lightwave Technol 2015;33:3872–82. https://doi.org/10.1109/jlt.2015.2456152.Suche in Google Scholar

39. Zhang, J, Lv, C, Zhao, Y, Chen, B, Li, X, Huang, S, et al.. A novel shared-path protection algorithm with correlated risk against multiple failures in flexible bandwidth optical networks. Opt Fiber Technol 2012;18:532–40. https://doi.org/10.1016/j.yofte.2012.09.002.Suche in Google Scholar

40. López Vizcaíno, J, Soto, P, Ye, Y, Krummrich, PM. Differentiated quality of protection: an energy- and spectral-efficient resilience scheme for survivable static and dynamic optical transport networks with fixed- and flexible-grid. Opt Switch Netw 2016;19:78–96. https://doi.org/10.1016/j.osn.2015.03.006.Suche in Google Scholar

41. Walkowiak, K, Klinkowski, M, Rabiega, B, Goścień, R. Routing and spectrum allocation algorithms for elastic optical networks with dedicated path protection. Opt Switch Netw 2014;13:63–75. https://doi.org/10.1016/j.osn.2014.02.002.Suche in Google Scholar

42. Żotkiewicz, M, Ruiz, M, Klinkowski, M, Pióro, M, Velasco, L. Reoptimization of dynamic flexgrid optical networks after link failure repairs. IEEE/OSA J Opt Commun Netw 2015;7:49–61. https://doi.org/10.1364/JOCN.7.000049.Suche in Google Scholar

43. Chen, B, Zhang, J, Zhao, Y, Lv, C, Zhang, W, Huang, S, et al.. Optical Fiber Technology Multi-link failure restoration with dynamic load balancing in spectrum-elastic optical path networks. Opt Fiber Technol 2012;18:21–8. https://doi.org/10.1016/j.yofte.2011.10.002.Suche in Google Scholar

44. Zhu, Z, Member, S, Lu, W, Zhang, L, Ansari, N. Dynamic service provisioning in elastic optical networks with hybrid single- / multi-path routing. J Light Technol 2013;31:15–22. https://doi.org/10.1109/jlt.2012.2227683.Suche in Google Scholar

45. Paolucci, F, Castro, A, Cugini, F, Velasco, L, Castoldi, P. Multipath restoration and bitrate squeezing in SDN-based elastic optical networks [Invited]. Photonic Netw Commun 2014;28:45–57.10.1007/s11107-014-0444-4Suche in Google Scholar

46. Castro, A, Velasco, L, Ruiz, M, Comellas, J. Single-path provisioning with multi-path recovery in flexgrid optical networks. In: Int Congr Ultra Mod Telecommun Control Syst Work 2012;745–51 pp. https://doi.org/10.1109/ICUMT.2012.6459763.Suche in Google Scholar

47. Ramamurthy, S, Sahasrabuddhe, L, Mukherjee, B. Survivable WDM mesh networks. Light Technol J 2003;21:870–83. https://doi.org/10.1109/jlt.2002.806338.Suche in Google Scholar

Received: 2020-10-16
Accepted: 2020-12-07
Published Online: 2021-01-26
Published in Print: 2023-10-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Effect of carrier (hole) temperature on performance of optical amplifiers quantum dot structure
  4. Devices
  5. 1 × 2 power splitter based on photonics crystals fibers
  6. Evolution of Adder and Subtractor Circuit Using Si3N4 Microring Resonator
  7. Fibers
  8. Different Photonic Crystal Fibers Configurations with the Key Solutions for the Optimization of Data Rates Transmission
  9. Networks
  10. Design and implementation of OLT switching function in 40/10G TDM-PON experimental system
  11. A parallel cross-connection recovery scheme for dual link failure in elastic optical networks
  12. A Brief Review on the Methods that Improve Optical Burst Switching Network Performance
  13. MBO-Based Bandwidth Allocation and Traffic Coloring Optimization in PON
  14. HMM-Based Secure Framework for Optical Fog Devices in the Optical Fog/Cloud Network
  15. Attack-Aware Dynamic Upstream Bandwidth Assignment Scheme for Passive Optical Network
  16. Systems
  17. 2 × 10 Gbit/s–10 GHz Radio over Free Space Optics Transmission System Incorporating Mode Division Multiplexing of Hermite Gaussian Modes
  18. Impact of Rayleigh-Distributed PAPR on the Performance of a Pre-Clipped DCO-OFDM System
  19. Suitability of FBG for Gain Flatness of 64 × 10 Gbps DWDM System Using Hybrid (EDFA+YDFA) Optical Amplifier in C + L Band up to 50 GHz (0.4 nm) Channel Spacing
  20. BER Performance Analysis of an Orthogonal FDM Free Space Optical Communication System with Homodyne Optical Receiver over Turbulent Atmospheric Channel
  21. Theory
  22. Numerical Analysis of Soliton Propagation in a Tapered Waveguide
  23. New Optical Codes Based on Construction of Parity Check Matrix of LDPC Codes
  24. Performance Analysis of 20 Gbit/s–40 GHz MDM-Ro-FSO Link Incorporating DPSK Modulation Scheme
Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2020-0252/pdf
Button zum nach oben scrollen