Startseite Numerical Analysis of Soliton Propagation in a Tapered Waveguide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Analysis of Soliton Propagation in a Tapered Waveguide

  • M. A. Raja , S. Ranathive , M. Sivaram , L. Krishna Kumar , K. Vinoth Kumar und Iraj S Amiri EMAIL logo
Veröffentlicht/Copyright: 8. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, dispersion decreased profiled tapered fiber is designed whose dispersion characteristics and soliton propagation is investigated numerically using Darboux transformation. The result reveals that solitons pulse gets compression as it propagates along the length of the tapered region.

References

1. Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl Phys Lett. 1973;23:142–4.10.1063/1.1654836Suche in Google Scholar

2. Mollenauer LF, Stolen RH, Gordon JP. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett. 1980;45:1095–8.10.1103/PhysRevLett.45.1095Suche in Google Scholar

3. Agrawal GP. Nonlinear fiber optics. New York: Academic Press; 1995.Suche in Google Scholar

4. Lægsgaard J. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers. J Opt Soc Am B. 2018;35:783–9.10.1364/JOSAB.35.000783Suche in Google Scholar

5. Anashkin EA, Shiryaev VS, Koptev MY, Stepanov BS, Muravyev SV. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion. 2018;480:43–50.10.1016/j.jnoncrysol.2017.07.033Suche in Google Scholar

6. Yang C, Li W, Yu W, Liu M, Zhang Y, Ma G, et al. Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinar Dyn. 2018;92:203–13.10.1007/s11071-018-4049-9Suche in Google Scholar

7. Zhang Y, Yang C, Yu W, Mirzazadeh M, Zhou Q, Liu W. Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 2018;94:1351–60.10.1007/s11071-018-4428-2Suche in Google Scholar

8. Habib MS, Markos C, Antonio-Lopez JE, Correa RA, Bang O, Bache M. Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers. Opt Express. 2018;26:24357–71.10.1364/OE.26.024357Suche in Google Scholar PubMed

9. Chen Q, Zhang WG, Zhang HQ, Yang B. Rogue wave solutions for nonlinear Schrödinger equation with variable coefficients in nonlinear optical systems. Commun Theor Phys. 2014;62:373–82.10.1088/0253-6102/62/3/14Suche in Google Scholar

10. Mani Rajan MS, Mahalingam A, Uthayakumar A, Porsezian K. Observation of two soliton propagation in an erbium doped inhomogeneous lossy fiber with phase modulation. Commun Nonlinear Sci Numer Simul. 2013;18:1410–32.10.1016/j.cnsns.2012.10.008Suche in Google Scholar

11. Mani Rajan MS, Mahalingam A. Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch system with loss/gain driven by an external potential. J Math Phys. 2013;54:1–14.10.1063/1.4798477Suche in Google Scholar

Received: 2019-05-07
Accepted: 2019-07-25
Published Online: 2019-08-08
Published in Print: 2023-10-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Effect of carrier (hole) temperature on performance of optical amplifiers quantum dot structure
  4. Devices
  5. 1 × 2 power splitter based on photonics crystals fibers
  6. Evolution of Adder and Subtractor Circuit Using Si3N4 Microring Resonator
  7. Fibers
  8. Different Photonic Crystal Fibers Configurations with the Key Solutions for the Optimization of Data Rates Transmission
  9. Networks
  10. Design and implementation of OLT switching function in 40/10G TDM-PON experimental system
  11. A parallel cross-connection recovery scheme for dual link failure in elastic optical networks
  12. A Brief Review on the Methods that Improve Optical Burst Switching Network Performance
  13. MBO-Based Bandwidth Allocation and Traffic Coloring Optimization in PON
  14. HMM-Based Secure Framework for Optical Fog Devices in the Optical Fog/Cloud Network
  15. Attack-Aware Dynamic Upstream Bandwidth Assignment Scheme for Passive Optical Network
  16. Systems
  17. 2 × 10 Gbit/s–10 GHz Radio over Free Space Optics Transmission System Incorporating Mode Division Multiplexing of Hermite Gaussian Modes
  18. Impact of Rayleigh-Distributed PAPR on the Performance of a Pre-Clipped DCO-OFDM System
  19. Suitability of FBG for Gain Flatness of 64 × 10 Gbps DWDM System Using Hybrid (EDFA+YDFA) Optical Amplifier in C + L Band up to 50 GHz (0.4 nm) Channel Spacing
  20. BER Performance Analysis of an Orthogonal FDM Free Space Optical Communication System with Homodyne Optical Receiver over Turbulent Atmospheric Channel
  21. Theory
  22. Numerical Analysis of Soliton Propagation in a Tapered Waveguide
  23. New Optical Codes Based on Construction of Parity Check Matrix of LDPC Codes
  24. Performance Analysis of 20 Gbit/s–40 GHz MDM-Ro-FSO Link Incorporating DPSK Modulation Scheme
Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2019-0118/html
Button zum nach oben scrollen