Startseite 1 × 2 power splitter based on photonics crystals fibers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

1 × 2 power splitter based on photonics crystals fibers

  • Assia Ahlem Harrat , Mohammed Debbal EMAIL logo und Mohammed Chamse-Eddine Ouadah
Veröffentlicht/Copyright: 30. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this regard, we directed a theoretical study with numerical simulations. This study allowed us to illustrate how a photonic crystal fiber (PCF) structure could divide an optical signal. One of the most fundamental components used to construct photonic integrated circuits (PIC) is the splitter, which is using light coupling between the cores as a control until the output ports by using pure silica to replace some air-hole zones along the PCF axis and split the single signal on two ports with almost equal intensity in each port. Optical interconnects are one of the most basic components of integrated optics, and splitters for photonic power are a key element of a connected family. With the least amount of loss, a competent photonic splitter can guide light input of a certain wavelength to several ports at various intensities.


Corresponding author: Mohammed Debbal, Telecommunication Laboratory (LTT), 13000, Tlemcen, Belhadj Bouchaib University, Ain-Témouchent, 46000, Algeria, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gong, JM, Zuo, X, Zhao, YJOC. The steady SRS analysis theory of DWDM transmission system in single-mode silica fiber. Opt Commun 2015;350:257–62. https://doi.org/10.1016/j.optcom.2015.04.024.Suche in Google Scholar

2. Du, LB, Lam, CF. Super-PON: technology and standards for simplifying FTTH deployment. In: Du, LB, Lam, CF, editors. Photonic networks and devices. California, USA: Optical Society of America; 2020.10.1364/NETWORKS.2020.NeTu2B.1Suche in Google Scholar

3. Putri, N, Apriono, C, Natali, Y, editors. Increasing residential capacity in gigabit-capable passive optical network using high splitting ratio. In: 2020 3rd international conference on information and communications technology (ICOIACT): IEEE; 2020.10.1109/ICOIACT50329.2020.9332009Suche in Google Scholar

4. Rahman, LT, Akhter, ME, Sayem, FR, Hossain, M, Ahmed, R, Elahi, ML, et al.. A 1.55 μm wideband 1 × 2 photonic power splitter with arbitrary ratio: characterization and forward modeling. IEEE Access 2022;10:20149–58. https://doi.org/10.1109/access.2022.3151722.Suche in Google Scholar

5. Liu, Q, Xin, L, Wu, ZJAPE. Refractive index sensor of a photonic crystal fiber Sagnac interferometer based on variable polarization states. Appl Phys Express 2019;12:062009. https://doi.org/10.7567/1882-0786/ab1ffc.Suche in Google Scholar

6. Knight, JC. Photonic crystal fibres. Nature 2003;424:847–51. https://doi.org/10.1038/nature01940.Suche in Google Scholar PubMed

7. Digonnet, MJ, Kim, HK, Kino, GS, Fan, S. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers. J Light Technol 2005;23:4169–77. https://doi.org/10.1109/jlt.2005.859406.Suche in Google Scholar

8. Agbemabiese, PA, Akowuah, EKJSR. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity. Sci Rep 2020;10:1–12.10.1038/s41598-020-77114-xSuche in Google Scholar PubMed PubMed Central

9. Seraji, FE, Anzabi, LC. On characteristic behavior and flattened chromatic dispersion properties of bent photonic crystal fibers. J Opt Commun 2020.10.1515/joc-2019-0297Suche in Google Scholar

10. Joe, HE, Yun, H, Jo, SH, Jun, MB, Min, BK. A review on optical fiber sensors for environmental monitoring. Int J of Precis Eng and Manuf-Green Tech 2018;5:173–91. https://doi.org/10.1007/s40684-018-0017-6.Suche in Google Scholar

11. Sultana, J, Islam, MS, Ahmed, K, Dinovitser, A, Ng, BWH, Abbott, D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt 2018;57:2426–33. https://doi.org/10.1364/ao.57.002426.Suche in Google Scholar PubMed

12. De, M, Gangopadhyay, TK, Singh, VKJS. Prospects of photonic crystal fiber as physical sensor: an overview. Sensors 2019;19:464. https://doi.org/10.3390/s19030464.Suche in Google Scholar PubMed PubMed Central

13. Liu, Q, Xue, P, Liu, ZJAPE. Voltage sensor based on liquid-crystal-infiltrated photonic crystal fiber with high index. Appl Phys Express 2020;13:032005. https://doi.org/10.35848/1882-0786/ab7265.Suche in Google Scholar

14. Novoa, D, Joly, NYJC. Specialty photonic crystal fibers and their applications. Switzerland: MDPI; 2021:739 p.Suche in Google Scholar

15. Autere, A, Jussila, H, Dai, Y, Wang, Y, Lipsanen, H, Sun, ZJAM. Nonlinear optics with 2D layered materials. Adv Mater 2018;30:1705963. https://doi.org/10.1002/adma.201705963.Suche in Google Scholar PubMed

16. Kiroriwal, M, Singal, P. Design and analysis of highly nonlinear, low dispersion AlGaAs-based photonic crystal fiber. J Opt Commun 2021.10.1515/joc-2020-0145Suche in Google Scholar

17. Shao, M, Sun, H, Liang, J, Han, L, Feng, DJISJ. In-fiber Michelson interferometer in photonic crystal fiber for humidity measurement. IEEE Sens J 2020;21:1561–7. https://doi.org/10.1109/jsen.2020.3019717.Suche in Google Scholar

18. Li, F, Yang, Z, Lv, Z, Wang, Y, Li, Q, Wei, Y, et al.. High energy femtosecond laser micromachining with hollow core photonic crystal fiber delivery. Optik 2019;194:163093. https://doi.org/10.1016/j.ijleo.2019.163093.Suche in Google Scholar

19. Cui, Y, Huang, W, Li, Z, Zhou, Z, Wang, ZJOE. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering. Opt Express 2019;27:30396–404. https://doi.org/10.1364/oe.27.030396.Suche in Google Scholar

20. Huang, Y, Yang, H, Mao, YJOE. Design of linear photonic crystal fiber with all-positive/negative ultraflattened chromatic dispersion for the whole telecom band. Opt Eng 2021;60:076110. https://doi.org/10.1117/1.oe.60.7.076110.Suche in Google Scholar

21. Fulconis, J, Alibart, O, O’Brien, JL, Wadsworth, WJ, Rarity, JG. Photonic crystal fibre source of photon pairs for quantum information processing. Phys Rev Lett 2006. https://doi.org/10.1103/PhysRevLett.99.120501.Suche in Google Scholar PubMed

22. Portosi, V, Laneve, D, Falconi, MC, Prudenzano, FJS. Advances on photonic crystal fiber sensors and applications. Sensors 2019;19:1892. https://doi.org/10.3390/s19081892.Suche in Google Scholar PubMed PubMed Central

23. Paulsen, HN, Hilligse, KM, Thøgersen, J, Keiding, SR, Larsen, JJJOL. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt Lett 2003;28:1123–5. https://doi.org/10.1364/ol.28.001123.Suche in Google Scholar PubMed

24. Amiri, I, Rashed, ANZ, Sarker, K, Paul, BK, Ahmed, K. Chirped large mode area photonic crystal modal fibers and its resonance modes based on finite element technique. J Opt Commun 2019.10.1515/joc-2019-0146Suche in Google Scholar

25. Fernández, DN, Joly, NY. Specialty photonic crystal fibers and their applications. Crystals 2021;11:739. https://doi.org/10.3390/cryst11070739.Suche in Google Scholar

26. Gelkop, B, Aichnboim, L, Malka, DJOFT. RGB wavelength multiplexer based on polycarbonate multicore polymer optical fiber. Opt Fiber Technol 2021;61:102441. https://doi.org/10.1016/j.yofte.2020.102441.Suche in Google Scholar

27. Elbaz, D, Malka, D, Zalevsky, ZJE. Photonic crystal fiber based 1× N intensity and wavelength splitters/couplers. Electromagnetics 2012;32:209–20. https://doi.org/10.1080/02726343.2012.672040.Suche in Google Scholar

28. Naghizade, S, Mohammadi, SJO, Electronics, Q. Design and engineering of dispersion and loss in photonic crystal fiber 1× 4 power splitter (PCFPS) based on hole size alteration and optofluidic infiltration. Opt Quantum Electron 2019;51:1–14. https://doi.org/10.1007/s11082-018-1731-6.Suche in Google Scholar

29. Chang, W, Lu, L, Ren, X, Li, D, Pan, Z, Cheng, M, et al.. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photonics Res 2018;6:660–5. https://doi.org/10.1364/prj.6.000660.Suche in Google Scholar

30. Lin, Z, Shi, WJ. Broadband, low-loss silicon photonic Y-junction with an arbitrary power splitting ratio. Opt express 2019;27:14338–43. https://doi.org/10.1364/oe.27.014338.Suche in Google Scholar PubMed

31. Ma, Y, Zhang, H, Liu, T, Li, WJJB. Study on the properties of unidirectional absorption and polarization splitting in one-dimensional plasma photonic crystals with ultra-wideband. JOSA B 2019;36:2250–9. https://doi.org/10.1364/josab.36.002250.Suche in Google Scholar

32. Cheng, L, Mao, S, Li, Z, Han, Y, Fu, HJM. Grating couplers on silicon photonics: design principles, emerging trends and practical issues. Micromachines 2020;11:666. https://doi.org/10.3390/mi11070666.Suche in Google Scholar PubMed PubMed Central

33. Malka, D, Peled, AJASS. Power splitting of 1× 16 in multicore photonic crystal fibers. Appl Surf Sci 2017;417:34–9. https://doi.org/10.1016/j.apsusc.2017.02.247.Suche in Google Scholar

Received: 2022-10-24
Accepted: 2023-01-06
Published Online: 2023-01-30
Published in Print: 2023-10-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Effect of carrier (hole) temperature on performance of optical amplifiers quantum dot structure
  4. Devices
  5. 1 × 2 power splitter based on photonics crystals fibers
  6. Evolution of Adder and Subtractor Circuit Using Si3N4 Microring Resonator
  7. Fibers
  8. Different Photonic Crystal Fibers Configurations with the Key Solutions for the Optimization of Data Rates Transmission
  9. Networks
  10. Design and implementation of OLT switching function in 40/10G TDM-PON experimental system
  11. A parallel cross-connection recovery scheme for dual link failure in elastic optical networks
  12. A Brief Review on the Methods that Improve Optical Burst Switching Network Performance
  13. MBO-Based Bandwidth Allocation and Traffic Coloring Optimization in PON
  14. HMM-Based Secure Framework for Optical Fog Devices in the Optical Fog/Cloud Network
  15. Attack-Aware Dynamic Upstream Bandwidth Assignment Scheme for Passive Optical Network
  16. Systems
  17. 2 × 10 Gbit/s–10 GHz Radio over Free Space Optics Transmission System Incorporating Mode Division Multiplexing of Hermite Gaussian Modes
  18. Impact of Rayleigh-Distributed PAPR on the Performance of a Pre-Clipped DCO-OFDM System
  19. Suitability of FBG for Gain Flatness of 64 × 10 Gbps DWDM System Using Hybrid (EDFA+YDFA) Optical Amplifier in C + L Band up to 50 GHz (0.4 nm) Channel Spacing
  20. BER Performance Analysis of an Orthogonal FDM Free Space Optical Communication System with Homodyne Optical Receiver over Turbulent Atmospheric Channel
  21. Theory
  22. Numerical Analysis of Soliton Propagation in a Tapered Waveguide
  23. New Optical Codes Based on Construction of Parity Check Matrix of LDPC Codes
  24. Performance Analysis of 20 Gbit/s–40 GHz MDM-Ro-FSO Link Incorporating DPSK Modulation Scheme
Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2022-0273/html
Button zum nach oben scrollen