Startseite Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks

  • Ravi Kumar EMAIL logo und Anurag Tripathi
Veröffentlicht/Copyright: 20. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the most recent years, developing web applications such as cloud computing, Big Data and latest cell phone applications have added more workload on the server centers. With the expansion on the network traffic, the consumption of power also increases. In past to reduce power consumption AWG based optical switch designs are proposed, and BER, energy consumption analysis has been carried out in isolated switch. In this paper, cascadability analysis of optical switches in fiber optic and data center networks is presented, and BER is calculated for isolated and cascaded switches. In fixing switch size concepts of graph theory and small world model are used. The packet loss performance is also simulated under different loading and buffering conditions. Finally, cross layer optimization concept is discussed in fixing various switch parameters.

References

1. Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: recent trends and future challenges. IEEE Commun Mag. 2013;51:39–45.10.1109/MCOM.2013.6588648Suche in Google Scholar

2. Cisco Global Cloud Index. 2014. https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/547_11_10-15- Documents Cisco _GCI _Deck _2014-2019_for_CKN__10NOV2015_.pdf.Suche in Google Scholar

3. Srivastava R, Singh RK, Singh YN. Large capacity optical router based on arrayed waveguide gratings and optical loop buffer. Opt Quant Electron. 2009;41:463–80.10.1007/s11082-010-9379-xSuche in Google Scholar

4. Srivastava R, Singh YN. Fiber optic loop buffer switch incorporating 3R regeneration. Opt Quant Electron. 2011;42:297.10.1007/s11082-011-9459-6Suche in Google Scholar

5. Srivastava R, Mangal V, Singh RK, Singh YN. A modified photonic switch architecture based on fiber loop memory. In India Conference, 2006 Annual IEEE, 2006 September 15: 1–5. IEEE.10.1109/INDCON.2006.302784Suche in Google Scholar

6. Shukla VA, Jain AR, Srivastava R. Design of an arrayed waveguide gratings based optical packet switch. J Eng Sci Technol. 2016;11:12–20.Suche in Google Scholar

7. Singla A, Singh A, Ramachandran K, Xu L, Zhang Y. Feasibility study on topology malleable data center networks (DCN) using optical switching technologies. In: Proceedings of Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference (OFC/NFOEC), 2011: 1–3.10.1364/OFC.2011.OWU2Suche in Google Scholar

8. Kachris C, Bergman K, Tomkos I, editors. Optical interconnects for future data center networks. Springer Science & Business Media, 2012 November 7. Springer. ISBN 978-1-4614-4630-9.Suche in Google Scholar

9. Singh RK, Srivastava R, Singh YN. Wavelength division multiplexed loop buffer memory based optical packet switch. Opt Quant Electron. 2007;39:15–3.10.1007/s11082-007-9061-0Suche in Google Scholar

10. Srivastava R, Singh YN. Feedback fiber delay lines and AWG based optical packet switch architecture. Opt Switch Netw. 2010;7:75–84.10.1016/j.osn.2010.01.002Suche in Google Scholar

11. Yin Y, Proietti R, Ye X, Nitta CJ, Akella V, Yoo SJ, et al. AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J Sel Top Quant Electron. 2013;19:272–80.10.1109/JSTQE.2012.2209174Suche in Google Scholar

12. Shukla V, Jain A, Srivastava R. Performance evaluation of an AWG based optical router. Opt Quant Electron. 2016;48:69.10.1007/s11082-015-0348-2Suche in Google Scholar

13. Srivastava R, Singh RK, Singh YN. WDM-based optical packet switch architectures. J Opt Netw. 2008;7:94–105.10.1364/JON.7.000094Suche in Google Scholar

14. Srivastava R, Singh RK, Singh YN. Design analysis of optical loop memory. J Lightwave Technol. 2009;27:4821–31.10.1109/JLT.2009.2026493Suche in Google Scholar

15. Samoud W, Ware C, Lourdiane M. Performance analysis of a hybrid optical–electronic packet switch supporting different service classes. J Opt Commun Netw. 2015;7:952–9.10.1364/JOCN.7.000952Suche in Google Scholar

16. Singh A, Tiwari AK, Srivastava R. Design and analysis of hybrid optical and electronic buffer based optical packet switch. Sādhanā. 2018;43:19.10.1007/s12046-018-0786-1Suche in Google Scholar

17. Gezhi Photonics Co. Ltd. 2018. http://www.sfpfibermodule.com/sale-7717180-40-channels-arrayed-waveguide-grating-passive-optical-network-rackmount-module.html Suche in Google Scholar

18. Kumar R, Tiwari A. Design and analysis of optical switch for data center networks incorporating ACO-OFDM with PAPR reduction. J Eng Sci Technol. 2018;13;2328–41.Suche in Google Scholar

19. Newman ME, Watts DJ, Strogatz SH. Random graph models of social networks. Proc Natl Acad Sci. 2002;99:2566–72.10.1073/pnas.012582999Suche in Google Scholar PubMed PubMed Central

20. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature. 1998;393:440.10.1038/30918Suche in Google Scholar PubMed

21. Barabási AL, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–12.10.1515/9781400841356.349Suche in Google Scholar

22. Leskovec J, Lang K, Dasgupta A, Mahoney M. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 2009;6:29–123.10.1080/15427951.2009.10129177Suche in Google Scholar

Received: 2018-08-09
Accepted: 2018-09-06
Published Online: 2018-09-20
Published in Print: 2021-10-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Performance Analysis of Distributed Raman Amplifier Using Different Pumping Methods in DWDM Communication Systems
  4. Influence of Conventional Optical Amplifiers for 64×10 Gbps WDM System
  5. Devices
  6. Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks
  7. Arrayed Waveguide Grating and Re-Circulating Buffer Based Optical Packet Switch
  8. A Joint Multicast Optimization Approach for QoS Provisioning in Optical Label Switching (OLS) Networks
  9. Fibers
  10. Rigorous Eigenmode Derivations and Spectral Analysis for Step-Index Confocal Parabolic Optical Fibers
  11. Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application
  12. Analysis of Microstructured Photonic Crystal Fiber with Dual Core Suspension for the Enhanced Supercontinuum Generation
  13. Measurements
  14. Analysis of Optical Backbone Fiber and Trace Report of Break Fiber by Using Optical Time Domain Reflectometer
  15. Networks
  16. An Improved Hybrid WDM/TDM PON Model with Enhanced Performance Using Different Modulation Formats of WDM Transmitter
  17. Receiver
  18. Efficient Blind Adaptive CSE to Reduce Cyclic Prefix Length in Direct Detection Optical OFDM Systems
  19. Systems
  20. Novel Manchester-Based Multilevel Signaling for High-Speed Optical Communication Systems
  21. Analysis of Four Wave Mixing Effects in 16 ×10 Gb/S WDM Optical Communication System
  22. Design and Simulation of 1.28 Tbps Dense Wavelength Division Multiplex System Suitable for Long Haul Backbone
  23. Millimetre Waves Over Free Space Optics System for 5G Application
  24. 40 Gbps Laguerre-Gaussian and Hermite-Gaussian Optical Mode Division Multiplexing for Radio over Fiber System
  25. Theory
  26. A Study of Different Forms of Dual Polarization – Quadrature Amplitude Modulation and its Performance Analysis in Terms of Q-Factor and Distance
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0142/html
Button zum nach oben scrollen