Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application
Abstract
A novel photonic crystal fiber (PCF) based on TOPAS, consisting only rectangular slots is presented and analyzed in this paper. The PCF promises not only an extremely low effective material loss (EML) but also a flattened dispersion over a broad frequency range. The modal characteristics of the proposed fiber have been thoroughly investigated using finite element method. The fiber confirms a low EML of 0.009 to 0.01 cm−1 in the frequency range of 0.77–1.05 THz and a flattened dispersion of 0.22±0.01 ps/THz/cm. Besides, some other significant characteristics like birefringence, single mode operation and confinement loss have also been inspected. The simplicity of the fiber makes it easily realizable using the existing fabrication technologies. Thus it is anticipated that the new fiber has the potential to ensure polarization preserving transmission of terahertz signals and to serve as an efficient medium in the terahertz frequency range.
References
1. Jones GA, Layer DH, Osenkowsky TG. National association of broadcasters engineering handbook. Taylor and Francis, 2007. ISBN 1136034102.Search in Google Scholar
2. Fukunaga K, Sekine N, Hosako I, Oda N, Yoneyama H, Sudoh T. Realtime terahertz imaging for art conservation science. J Eur Opt Soc Rapid Publ. 2008;3. Article no. 0802710.2971/jeos.2008.08027Search in Google Scholar
3. Sultana J, Islam MS, Ahmed K, Dinovitser A, Ng BW-H, Abbott D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl Opt. 2018;57:2426–33.10.1364/AO.57.002426Search in Google Scholar PubMed
4. Islam MS, Sultana J, Rifat AA, Dinovitser A, Ng BW-H, Abbott D. Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens J. 2018;18:4073–80.10.1109/JSEN.2018.2819165Search in Google Scholar
5. Islam MS, Sultana J, Dinovitser A, Ahmed K, Ng BW-H, Abbott D. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt Commun. 2018;426:341–7.10.1016/j.optcom.2018.05.030Search in Google Scholar
6. Kawase K, Ogawa Y, Watanabe Y, Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express. 2003;11:2549–54.10.1364/OE.11.002549Search in Google Scholar PubMed
7. Mizuno M, Fukunaga K, Saito S, Hosako I. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy. J Eur Opt Soc Rapid Publ. 2009;4:349–58.10.2971/jeos.2009.09044Search in Google Scholar
8. Nagel M, Bolivar PH, Brucherseifer M, Kurz H, Bosserhoff A, Bttner R. Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett. 2002;80:154–6.10.1063/1.1428619Search in Google Scholar
9. Zaytsev KI, Kudrin KG, Karasik VE, Reshetov IV, Yurchenko SO. In vivo terahertz spectroscopy of pigmentary skin nevi: pilot study of non-invasive early diagnosis of dysplasia. Appl Phys Lett. 2015;106. Article no. 05370210.1063/1.4907350Search in Google Scholar
10. Reid CB, Fitzgerald A, Reese G, Goldin R, Tekkis P, O’Kelly PS, et al. Terahertz pulsed imaging of freshly excised human colonic tissues. Phys Med Biol. 2011;56:4333–53.10.1088/0031-9155/56/14/008Search in Google Scholar PubMed
11. Ashworth PC, Pickwell-MacPherson E, Provenzano E, Pinder SE, Purushotham AD, Pepper M, et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express. 2009;17:12444–54.10.1364/OE.17.012444Search in Google Scholar
12. Kowalski M, Kastek M, Piszczek M, Życzkowski M, Szustakowski M. Harmless screening of humans for the detection of concealed objects. Safety and Security Engineering VI. 2015;151:215–23.10.2495/SAFE150191Search in Google Scholar
13. Clothier RH, Bourne N. Effects of THz exposure on human primary keratinocyte differentiation and viability. J Biol Phys. 2003;29:179–85.10.1023/A:1024492725782Search in Google Scholar
14. Cook DJ, Decker BK, Allen MG. Quantitative THz spectroscopy of explosive materials. In: Optical terahertz science and technology. USA: Technical Digest (CD) Optical Society of America, 2005. DOI: https://doi.org/10.1364/OTST.2005.MA610.1364/OTST.2005.MA6Search in Google Scholar
15. Siegel PH. Terahertz technology. IEEE Trans Microw Theory Tech. 2002;50:910–28.10.1109/22.989974Search in Google Scholar
16. Mullins J. Using unusable frequencies [solid-state terahertz laser]. IEEE Spectr. 2002;39:22–23.10.1109/MSPEC.2002.1015412Search in Google Scholar
17. Atakaramians S, Afshar VS, Monro TM, Abbott D. Terahertz dielectric waveguides. Adv Opt Photonics. 2013;5:169–215.10.1364/AOP.5.000169Search in Google Scholar
18. Chen NN, Liang J, Ren LY. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. Appl Opt. 2013;52:5297–302.10.1364/AO.52.005297Search in Google Scholar PubMed
19. Wang K, Mittleman DM. Metal wires for terahertz wave guiding. Nat. 2004;432:376–9.10.1038/nature03040Search in Google Scholar PubMed
20. Bowden B, Harrington JA, Mitrofanov O. Silver/polystyrenecoated hollow glass waveguides for the transmission of terahertz radiation. Opt Lett. 2007;32:2945–47.10.1364/OL.32.002945Search in Google Scholar PubMed
21. Chen L-J, Chen H-W, Kao T-F, Lu J-Y, Sun C-K. Lowloss subwavelength plastic fiber for terahertz waveguiding. Opt Lett. 2006;31:308–10.10.1364/OL.31.000308Search in Google Scholar
22. Sultana J, Islam MS, Islam M, Abbott D. High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron Lett. 2017;54:61–2.10.1049/el.2017.3694Search in Google Scholar
23. Islam MS, Sultana J, Dinovitser A, Faisal M, Islam MR, Ng BW-H, et al. Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl Opt. 2018;57:666–72.10.1364/AO.57.000666Search in Google Scholar PubMed
24. Islam MS, Sultana J, Dinovitser A, Ng BW-H, Abbott D. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications. Opt Commun. 2018;413:242–48.10.1016/j.optcom.2017.12.061Search in Google Scholar
25. Islam MS, Sultana J, Atai J, Abbott D, Rana S, Islam MR. Ultra low-loss hybrid core porous fiber for broadband applications. Appl Opt. 2017;56:1232–37.10.1364/AO.56.001232Search in Google Scholar PubMed
26. Islam MS, Rana S, Islam MR, Faisal M, Rahman H, Sultana J. Porous core photonic crystal fibre for ultra-low material loss in THz regime. IET Commun. 2016;10:2179–83.10.1049/iet-com.2016.0227Search in Google Scholar
27. Islam MS, Sultana J, Faisal M, Islam MR, Dinovitser A, Ng BW, et al. A modified hexagonal photonic crystal fiber for terahertz applications. Opt Mater (Amst). 2018;79:336–39.10.1016/j.optmat.2018.03.054Search in Google Scholar
28. Themistos C, Rahman BMA, Rajarajan M, Grattan KTV, Bowden B, Harrington JA. Characterization of Silver/Polystyrene (PS)-coated hollow glass waveguides at THz frequency. J Lightwave Technol. 2007;25:2456–62.10.1109/JLT.2007.902745Search in Google Scholar
29. Bao HL, Nielsen K, Rasmussen HK, Jepsen PU, Bang O. Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt Express. 2012;20:29507–229517.10.1364/OE.20.029507Search in Google Scholar PubMed
30. Liang J, Ren L, Chen N, Zhou C. Broadband, low-loss, dispersion flattened porous core photonic band gap fiber for terahertz (THz) wave propagation. Opt Commun. 2013;295:257–61.10.1016/j.optcom.2013.01.010Search in Google Scholar
31. Kaijage SF, Ouyang Z, Jin X. Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photonics Technol Lett. 2013;25:1454–7.10.1109/LPT.2013.2266412Search in Google Scholar
32. Islam R, Hasanuzzaman GKM, Habib MS, Rana S, Khan MAG. Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Opt Fiber Technol. 2015;24:38–43.10.1016/j.yofte.2015.04.006Search in Google Scholar
33. Islam MS, Rana S, Rahman H, Sultana J. Porous core photonic crystal fiber for ultra-low material loss in THz regime. IET Commun. 2016;10:2179–83.10.1049/iet-com.2016.0227Search in Google Scholar
34. Hasan MR, Islam MA, Ahmmed R. A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J Eur Opt Soc Rapid Publ. 2016;12. DOI: https://doi.org/10.1186/s41476-016-0017-510.1186/s41476-016-0017-5Search in Google Scholar
35. Hasan MI, Habib MS, Habib MS. Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photonics Nanostruct Fundam Appl Phys Lett. 2014;12:205–11.10.1016/j.photonics.2014.02.002Search in Google Scholar
36. Islam S, Islam MR, Faisal M, Arefin AS, Rahman H, Sultana J, et al. Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt Eng. 2016;55:076117.10.1117/1.OE.55.7.076117Search in Google Scholar
37. Hasan MI, Razzak SA, Hasanuzzaman G, Habib MS. Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photonics Technol Lett. 2014;26:2372–5.10.1109/LPT.2014.2356492Search in Google Scholar
38. Ali S, Ahmed N, Aljunid S, Ahmad B. Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion. Electron Lett. 2016;52:863–5.10.1049/el.2016.0364Search in Google Scholar
39. Ali S, Ahmed N, Aljunid S, Ahmad B. Hybrid porous core low loss dispersion flattened fiber for THz propagation. Photonics Nanostruct. 2016;22:18–23.10.1016/j.photonics.2016.09.003Search in Google Scholar
40. Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, et al. Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photonics J. 2016;8:1–11.10.1109/JPHOT.2016.2633229Search in Google Scholar
41. Sultana J, Islam MS, Atai J, Islam MR, Abbott D. Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt Eng. 2017;56:076114.10.1117/1.OE.56.7.076114Search in Google Scholar
42. Islam MS, Faisal M, Razzak SA. “Dispersion flattened porous-core honeycomb lattice terahertz fiber for ultra low loss transmission. IEEE J Quantum Electron. 2017;53:1–8.10.1109/JQE.2017.2760361Search in Google Scholar
43. Reyes-Vera E, Usuga-Restrepo J, Jiménez-Durango C, Montoya-Cardona J, Gomez-Cardona N. Design of low-loss and highly birefringent porous-core photonic crystal fiber and its application to terahertz polarization beam splitter. IEEE Photonics J. 2018;10:1–13.10.1109/JPHOT.2018.2860251Search in Google Scholar
44. Rana S, Rakin AS, Subbaraman H, Leonhardt R, Abbott D. Low loss and low dispersion fiber for transmission applications in the terahertz regime. IEEE Photonics Technol Lett. 2017;29:830–3.10.1109/LPT.2017.2693203Search in Google Scholar
45. Ebendorff-Heidepriem H, Monro TM. Extrusion of complex preforms for microstructured optical fibers. Opt Express. 2007;15:15086–92.10.1364/OE.15.015086Search in Google Scholar
46. Atakaramians S, Afshar S, Ebendorff-Heidepriem H, Nagel M, Fischer BM, Abbott D, et al. THz porous fibers: design, fabrication and experimental characterization. Opt Express. 2009;17:14053–62.10.1364/OE.17.014053Search in Google Scholar
47. Islam R, Habib MS, Hasanuzzaman G, Ahmad R, Rana S, Kaijage SF. Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime. IEEE Photonics Technol Lett. 2015;27:2222–5.10.1109/LPT.2015.2457673Search in Google Scholar
48. Hasan MR, Anower MS, Hasan MI, Razzak S. Polarization maintaining low-loss slotted core kagome lattice THz fiber. IEEE Photonics Technol Lett. 2016;28:1751–4.10.1109/LPT.2016.2569565Search in Google Scholar
49. Islam MS, Sultana J, Ahmed K, Islam MR, Dinovitser A, Ng BW-H, et al. A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J. 2017;18:575–82.10.1109/JSEN.2017.2775642Search in Google Scholar
50. Ponseca CS, Pobre JR, Estacio E, Sarukura N, Argyros A, Large MC, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt Lett. 2008;33:902–04.10.1364/OL.33.000902Search in Google Scholar
51. Goto M, Quema A, Takahashi H, Ono S, Sarukura N. Teflon photonic crystal fiber as terahertz waveguide. Jpn J Appl Phys. 2004;43:L317.10.1143/JJAP.43.L317Search in Google Scholar
52. Nielsen K, Rasmussen HK, Adam AJ, Planken PC, Bang O, Jepsen PU. Bendable, low-loss TOPAS fibers for the terahertz frequency range. Opt Express. 2009;17:8592–601.10.1364/OE.17.008592Search in Google Scholar
53. Tang X, Jiang Y, Sun B, Chen J, Zhu X, Zhou P, et al. Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol Lett. 2013;25:331–4.10.1109/LPT.2013.2238525Search in Google Scholar
54. Argyros A. Microstructures in polymer fibres for optical fibres, THz waveguides, and fibre-based metamaterials. ISRN Opt. 2013;2013. Article ID 78516210.1155/2013/785162Search in Google Scholar
55. Islam MS, Sultana J, Rana S, Islam MR, Faisal M, Kaijage SF, et al. Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt Fiber Technol. 2017;34:6–11.10.1016/j.yofte.2016.11.014Search in Google Scholar
56. Emiliyanov G, Jensen JB, Bang O, Hoiby PE, Pedersen LH, Kjær EM, et al. Localized biosensing with TOPAS microstructured polymer optical fiber: erratum. Opt Lett. 2007;32:460–2.10.1364/OL.32.001059Search in Google Scholar
57. Balakrishnan J, Fischer BM, Abbott D. Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy. Appl Opt. 2009;48:2262–6.10.1364/AO.48.002262Search in Google Scholar
58. Reid CB, Pickwell-MacPherson E, Laufer JG, Gibson AP, Hebden JC, Wallace VP. Accuracy and resolution of THz reflection spectroscopy for medical imaging. Phys Med Biol. 2010;55:4825.10.1088/0031-9155/55/16/013Search in Google Scholar PubMed
59. Bao H, Nielsen K, Rasmussen HK, Jepsen PU, Bang O. Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt Express. 2012;20:29507–17.10.1364/OE.20.029507Search in Google Scholar PubMed
60. Ahmed K, Islam M, Sen S, Paul BK, Chowdhury S, Hasan M, et al. Low-loss single mode terahertz microstructure fiber with near-zero-flattened dispersion. Adv Sci Eng Med. 2017;9:829–36.10.1166/asem.2017.2069Search in Google Scholar
61. Ahmed F, Roy S, Paul BK, Ahmed K, Bahar AN. Extremely low loss of photonic crystal fiber for terahertz wave propagation in optical communication applications. J Opt Commun. 2018. DOI: https://doi.org/10.1515/joc-2018-000910.1515/joc-2018-0009Search in Google Scholar
62. Ahmed K, Paul BK, Chowdhury S, Sen S, Islam MI, Islam MS, et al. Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime. IET Optoelectron. 2017;11:265–71.10.1049/iet-opt.2017.0028Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Amplifiers
- Performance Analysis of Distributed Raman Amplifier Using Different Pumping Methods in DWDM Communication Systems
- Influence of Conventional Optical Amplifiers for 64×10 Gbps WDM System
- Devices
- Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks
- Arrayed Waveguide Grating and Re-Circulating Buffer Based Optical Packet Switch
- A Joint Multicast Optimization Approach for QoS Provisioning in Optical Label Switching (OLS) Networks
- Fibers
- Rigorous Eigenmode Derivations and Spectral Analysis for Step-Index Confocal Parabolic Optical Fibers
- Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application
- Analysis of Microstructured Photonic Crystal Fiber with Dual Core Suspension for the Enhanced Supercontinuum Generation
- Measurements
- Analysis of Optical Backbone Fiber and Trace Report of Break Fiber by Using Optical Time Domain Reflectometer
- Networks
- An Improved Hybrid WDM/TDM PON Model with Enhanced Performance Using Different Modulation Formats of WDM Transmitter
- Receiver
- Efficient Blind Adaptive CSE to Reduce Cyclic Prefix Length in Direct Detection Optical OFDM Systems
- Systems
- Novel Manchester-Based Multilevel Signaling for High-Speed Optical Communication Systems
- Analysis of Four Wave Mixing Effects in 16 ×10 Gb/S WDM Optical Communication System
- Design and Simulation of 1.28 Tbps Dense Wavelength Division Multiplex System Suitable for Long Haul Backbone
- Millimetre Waves Over Free Space Optics System for 5G Application
- 40 Gbps Laguerre-Gaussian and Hermite-Gaussian Optical Mode Division Multiplexing for Radio over Fiber System
- Theory
- A Study of Different Forms of Dual Polarization – Quadrature Amplitude Modulation and its Performance Analysis in Terms of Q-Factor and Distance
Articles in the same Issue
- Frontmatter
- Amplifiers
- Performance Analysis of Distributed Raman Amplifier Using Different Pumping Methods in DWDM Communication Systems
- Influence of Conventional Optical Amplifiers for 64×10 Gbps WDM System
- Devices
- Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks
- Arrayed Waveguide Grating and Re-Circulating Buffer Based Optical Packet Switch
- A Joint Multicast Optimization Approach for QoS Provisioning in Optical Label Switching (OLS) Networks
- Fibers
- Rigorous Eigenmode Derivations and Spectral Analysis for Step-Index Confocal Parabolic Optical Fibers
- Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application
- Analysis of Microstructured Photonic Crystal Fiber with Dual Core Suspension for the Enhanced Supercontinuum Generation
- Measurements
- Analysis of Optical Backbone Fiber and Trace Report of Break Fiber by Using Optical Time Domain Reflectometer
- Networks
- An Improved Hybrid WDM/TDM PON Model with Enhanced Performance Using Different Modulation Formats of WDM Transmitter
- Receiver
- Efficient Blind Adaptive CSE to Reduce Cyclic Prefix Length in Direct Detection Optical OFDM Systems
- Systems
- Novel Manchester-Based Multilevel Signaling for High-Speed Optical Communication Systems
- Analysis of Four Wave Mixing Effects in 16 ×10 Gb/S WDM Optical Communication System
- Design and Simulation of 1.28 Tbps Dense Wavelength Division Multiplex System Suitable for Long Haul Backbone
- Millimetre Waves Over Free Space Optics System for 5G Application
- 40 Gbps Laguerre-Gaussian and Hermite-Gaussian Optical Mode Division Multiplexing for Radio over Fiber System
- Theory
- A Study of Different Forms of Dual Polarization – Quadrature Amplitude Modulation and its Performance Analysis in Terms of Q-Factor and Distance