Home Millimetre Waves Over Free Space Optics System for 5G Application
Article
Licensed
Unlicensed Requires Authentication

Millimetre Waves Over Free Space Optics System for 5G Application

  • Shakthi Murugan K H EMAIL logo and M Sumathi
Published/Copyright: November 24, 2018
Become an author with De Gruyter Brill

Abstract

With advancement in communication systems and ever increasing demand of bandwidth, research has been oriented towards 5G networks. For achieving high data rates, mm waves are employed using radio over fiber (RoF) technique. This work focus on employing mm waves in free space optics. Two independent channels are employed with each having 5 Gbps data rate and 60 GHz of radio signal. Output signal received is observed by analyzing using BER and eye diagrams.

References

1. Checko A, Christiansen HL, Ying Y, Scolari L, Kardaras G, Berger MS, et al. Cloud RAN for Mobile Networks - a Technology Overview. IEEE Commun Surv Tutorials. 2015;17:405.10.1109/COMST.2014.2355255Search in Google Scholar

2. Gupta A, Jha RK. A Survey of 5G Network: Architecture and Emerging Technologies IEEE Access. 2015;3:1206.10.1109/ACCESS.2015.2461602Search in Google Scholar

3. Bohata J, Komanec M, Spáčil J, Ghassemlooy Z, Zvánovec S, Slavík R. 24–26 GHz radio-over-fiber and free-space optics for fifth-generation systems. Opt Lett. 2018;43:1035–8.10.1364/OL.43.001035Search in Google Scholar PubMed

4. Pham Tien D, Kanno A, Kawanishi T. Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells. IEEE Wirel Commun. 2015;22:67.10.1109/MWC.2015.7306539Search in Google Scholar

5. Uysal M, Capsoni C, Ghassemlooy Z, Boucouvalas A, Udvary E. Optical wireless communications: an emerging technology. Switzerland: Springer, 2016.10.1007/978-3-319-30201-0Search in Google Scholar

6. Al-Raweshidy H, Shz K, eds. Radio over fiber technologies for mobile communications networks. 1st ed. Artech house universal communication series, 2002.Search in Google Scholar

7. Chaudhary S, Amphawan A. The role and challenges of free-space optical systems. J Opt Commun. 2014;35:327–34.10.1515/joc-2014-0004Search in Google Scholar

8. Chaudhary S, Amphawan A, Nisar K. Realization of free space optics with OFDM under atmospheric turbulence. Optik Int J Light Electron Optics. 2014;125:5196–8.10.1016/j.ijleo.2014.05.036Search in Google Scholar

9. Dat PT, Shah A, Kazaura K, Wakamori K, Suzuki T, Takahashi K, et al. An innovative technology for ubiquitous communication using radio on FSO links. Proceeding of International Conference on Advanced Technologies for Communications, 2008 oct: 124–7.10.1109/ATC.2008.4760535Search in Google Scholar

10. Chaudhary S, Sharma A. 6 x 20 Gbps long reach WDM-PI based high altitude platform inter-satellite communication system. Int J Comput Appl. 2015;122:22.Search in Google Scholar

11. Chaudhary S, Sharma A, Chaudhary N. 6×20 Gbps hybrid WDM–PI inter-satellite system under the influence of transmitting pointing errors. J Opt Commun. 2016;37:375–9.10.1515/joc-2015-0099Search in Google Scholar

12. Sharma A, Chaudhary S, Thakur D, Dhasratan V. A cost-effective high-speed radio over fibre system for millimeter wave applications. J Opt Commun. Published Online 15 December 2017. DOI:10.1515/joc-2017-0166.Search in Google Scholar

13. Chaudhary S, Chauhan P, Sharma A. High speed 4×2.5 Gbps-5 GHz AMI-WDM-RoF transmission system for WLANs. J Opt Commun. Published Online 18 July 2017. DOI:10.1515/joc-2017-0082.Search in Google Scholar

14. Chaudhary S, Thakur D, Sharma A. 10 Gbps-60 GHz RoF transmission system for 5G applications. J Opt Commun. Published Online 22 July 2017. DOI:10.1515/joc-2017-0079.Search in Google Scholar

15. Kapoor R, Sharma A, Chaudhary S. Empirical evaluation of 4 QAM and 4 PSK in OFDM-based inter-satellite communication system. J Opt Commun. Published Online 29 June 2017. DOI:10.1515/joc-2017-0059.Search in Google Scholar

16. Sharma A. Neetu, analysis and mitigation of receiver pointing error angle on inter-satellite communication. Int J Innov Tech Res. 2015 Nov;3:2540–44.Search in Google Scholar

17. Chaudhary S, Sharma A. Neetu, “6 x 20 Gbps long reach WDM-PI based high altitude platform inter-satellite communication system. Int J Comput Appl. 2015 July;122:41–5.10.5120/21861-5192Search in Google Scholar

18. Rana S, Sharma A. Comprehensive study of radio over fiber with different modulation techniques – a review. Int J Comput Appl. 2017 Aug;170:22–5. DOI:10.5120/ijca2017914829.Search in Google Scholar

19. Sharma A, Thakur D. A review on wlans with radio-over-fiber technology. Int J Electron Commun Eng. 2017 Aug;6:1–6.Search in Google Scholar

20. Thakur K, Sharma A. Comparison of MDRZ, CSRZ and DRZ schemes using different communiation channels. Int J Comput Appl. 2017 Aug. DOI:10.5120/ijca2017915106.Search in Google Scholar

21. Thakur K, Sharma A. Study of radio over fiber with different coding channel – a review. Int J Comput Appl. 2017 Aug. DOI:10.5120/ijca2017915033.Search in Google Scholar

22. Sharma A, Chauhan P. A study of radio over fiber technology in WLAN applications. Int J Res Appl Sci Eng Technol. 2017 August;5:416–20.10.22214/ijraset.2017.8058Search in Google Scholar

23. Sharma A, Kapoor R. Study of various challenges in is OWC: a review. Int J Res Appl Sci Eng Technol. 2017 August;5:802–07.10.22214/ijraset.2017.8112Search in Google Scholar

24. Sharma A, Rana S. Implementation of radio over fiber technology with different filtration techniques. Int J Res Appl Sci Eng Technol. 2017 August;5:783–89.10.22214/ijraset.2017.8110Search in Google Scholar

25. Sharma A, Chauhan P. High speed radio over fiber system for wireless local area networks by incorporating alternate mark inversion scheme. J Opt Commun. 2018. DOI:10.1515/joc-2018-0084.Search in Google Scholar

26. Amphawan A, Chaudhary S, Free-space optical mode division multiplexing for switching between millimeter-wave picocells, In: International Conference on Optical and Photonic Engineering (icOPEN2015), 2015: 95242H-95242H-6.10.1117/12.2189694Search in Google Scholar

27. Amphawan A, Chaudhary S, Chan V. 2×20 Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. J Eur Opt Soc Rapid Publ. 2014;9:14041 (1–6).10.2971/jeos.2014.14041Search in Google Scholar

28. Amphawan A, Chaudhary S, Din R, Omar MN, “5 Gbps HG 0, 1 and HG 0, 3 optical mode division multiplexing for RoFSO,” in signal processing & its applications (CSPA), 2015. IEEE 11th International Colloquium on, 2015:145–9.10.1109/CSPA.2015.7225635Search in Google Scholar

29. Amphawan A, Chaudhary S, Elfouly T, Abualsaud K. Optical mode division multiplexing for secure Ro-FSO WLANs. Adv Sci Lett. 2015;21:3046–9.10.1166/asl.2015.6518Search in Google Scholar

30. Bansal U, Kaur K, Chaudhary S. Role of laser linewidth in high speed DWDM system by incorporating duobinary modulation scheme. Int J Comput Appl. 2015;109:30–2.10.5120/19267-1042Search in Google Scholar

31. Chaudhary S, Amphawan A. High-speed millimeter communication through radio-over-free-space-optics network by mode-division multiplexing. Opt Eng. 2017;56:116112.10.1117/1.OE.56.11.116112Search in Google Scholar

32. Chaudhary S, Bansal P, Lumb M. Effect of beam divergence on WDM-FSO transmission system. Int J Comput Appl. 2014;93:28–32.10.5120/16181-5397Search in Google Scholar

33. Chaudhary S, Bansal P, Singh G. Implementation of FSO network under the impact of atmospheric turbulences. Int J Comput Appl. 2013;75:34–8.10.5120/13077-0193Search in Google Scholar

34. Chaudhary S, Chaudhary N, Sharma S, Choudhary B. High speed inter-satellite communication system by incorporating hybrid polarization-wavelength division multiplexing scheme. J Opt Commun. 2017;39:87–92.10.1515/joc-2016-0107Search in Google Scholar

35. Chaudhary S, Sharma S. Role of turbulences in WDM-polarization interleaving scheme based inter-satellite communication system. Int J Comput Appl. 2014;104:1–7.10.5120/18235-9224Search in Google Scholar

36. Kaur P, Kaur R, Chaudhary S. Implementation of high speed long reach hybrid radio over multimode transmission system. Int J Comput Appl. 2014;91:42–7.10.5120/15953-5409Search in Google Scholar

37. Kaur R, Chaudhary S. Simulative investigation of laser line-width and channel spacing for realization of DWDM systems under the impact of four wave mixing. J Opt Commun. 2014;35:157–65.10.1515/joc-2013-0152Search in Google Scholar

38. Sharma V. High speed CO-OFDM-FSO transmission system. Optik Int J Light Electron Optics. 2014;125:1761–3.10.1016/j.ijleo.2013.10.010Search in Google Scholar

39. Sharma V, Chaudhary S. Implementation of hybrid OFDM-FSO transmission system. Int J Comput Appl. 2012;58:37–40.10.5120/9305-3531Search in Google Scholar

40. Sharma V, Kumar S. Empirical evaluation of wired-and wireless-hybrid OFDM–OSSB–RoF transmission system. Optik Int J Light Electron Optics. 2013;124:4529–32.10.1016/j.ijleo.2013.01.045Search in Google Scholar

41. Amphawan A, Chaudhary S, Neo T-K. Hermite-Gaussian mode division multiplexing for free-space optical interconnects. Adv Sci Lett. 2015;21:3050–53.10.1166/asl.2015.6532Search in Google Scholar

42. Upadhyay KK, Srivastava S, Shukla N, Chaudhary S. High-speed 120 Gbps AMI-WDM-PDM free space optical transmission system. J Opt Commun. 2017.10.1515/joc-2017-0086Search in Google Scholar

43. Chaudhary S, Lin B, Tang X, Wei X, Zhou Z, Lin C, et al. 40 Gbps–80 GHz PSK‑MDM based Ro‑FSO transmission system. Opt Quant Electron. 2018;50:321. Doi:10.1007/s11082-018-1592-z.Search in Google Scholar

44. Chaudhary S, Amphawan A. High speed MDM-Ro-FSO communication system by incorporating AMI scheme. Int J Electron Lett. DOI:10.1080/21681724.2018.1494318.Search in Google Scholar

Received: 2018-09-08
Accepted: 2018-11-13
Published Online: 2018-11-24
Published in Print: 2021-10-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Performance Analysis of Distributed Raman Amplifier Using Different Pumping Methods in DWDM Communication Systems
  4. Influence of Conventional Optical Amplifiers for 64×10 Gbps WDM System
  5. Devices
  6. Cross-Layer Optimization and Cascadability of Optical Switches in Fiber Optic Data Networks
  7. Arrayed Waveguide Grating and Re-Circulating Buffer Based Optical Packet Switch
  8. A Joint Multicast Optimization Approach for QoS Provisioning in Optical Label Switching (OLS) Networks
  9. Fibers
  10. Rigorous Eigenmode Derivations and Spectral Analysis for Step-Index Confocal Parabolic Optical Fibers
  11. Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application
  12. Analysis of Microstructured Photonic Crystal Fiber with Dual Core Suspension for the Enhanced Supercontinuum Generation
  13. Measurements
  14. Analysis of Optical Backbone Fiber and Trace Report of Break Fiber by Using Optical Time Domain Reflectometer
  15. Networks
  16. An Improved Hybrid WDM/TDM PON Model with Enhanced Performance Using Different Modulation Formats of WDM Transmitter
  17. Receiver
  18. Efficient Blind Adaptive CSE to Reduce Cyclic Prefix Length in Direct Detection Optical OFDM Systems
  19. Systems
  20. Novel Manchester-Based Multilevel Signaling for High-Speed Optical Communication Systems
  21. Analysis of Four Wave Mixing Effects in 16 ×10 Gb/S WDM Optical Communication System
  22. Design and Simulation of 1.28 Tbps Dense Wavelength Division Multiplex System Suitable for Long Haul Backbone
  23. Millimetre Waves Over Free Space Optics System for 5G Application
  24. 40 Gbps Laguerre-Gaussian and Hermite-Gaussian Optical Mode Division Multiplexing for Radio over Fiber System
  25. Theory
  26. A Study of Different Forms of Dual Polarization – Quadrature Amplitude Modulation and its Performance Analysis in Terms of Q-Factor and Distance
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2018-0159/html
Scroll to top button