Abstract
Orthogonal Frequency Division Multiplexing along with the coherent detection and spectrally efficient modulation formats is a promising solution for long haul and high speed communication systems. Although they offer significant advantages which make them suitable for high speed and long haul communication systems they all are susceptible to phase noise. In this paper a combination of RF-pilot-based approach followed by pilot-based equalization approach is used for laser phase noise compensation. The various parameters such as drive voltage, bias voltage and extinction ratio are optimized to get the optimum performance from the proposed scheme. The designed system is then analyzed in terms of Symbol Error Rate (SER), constellation diagrams and error vector magnitude using various types of Quadrature Amplitude Modulation (QAM) formats.
References
1. Jacobsen G, Xu T, Lidón M. Phase noise influence in coherent systems. IEE Proc J (Optoelectronics). 1989;136:159–65.10.1049/ip-j.1989.0029Suche in Google Scholar
2. Jacobsen G, Xu T, Popov S, Li J, Friberg A, Zhang Y. Phase noise influence in coherent optical OFDM systems with RF pilot tone: digital IFFT multiplexing and FFT demodulation. J Opt Commun. 2012;33:289–275.10.1515/joc-2012-0038Suche in Google Scholar
3. Yi X, Hu S, Zhou H, Tang C, Xu B, Zhang J, et al. Phase noise effects on phase-modulated coherent optical OFDM. IEEE Photonics J. 2016;8:1–8.10.1109/JPHOT.2015.2509858Suche in Google Scholar
4. Atzmon Y, Nazarathy M. Laser phase noise in coherent and differential optical transmission revisited in the polar domain. J Light Technol. 2009;27:19–29.10.1109/JLT.2008.925036Suche in Google Scholar
5. Shieh W, Yi X, Tang Y. Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre. Electron Lett. 2007;43:183.10.1049/el:20073496Suche in Google Scholar
6. Le ST, Kanesan T, Giacoumidis E, Doran NJ, Ellis AD. Quasi-pilot aided phase noise estimation for coherent optical OFDM systems. IEEE Photonics Tech Lett. 2014;26:504–07.10.1109/LPT.2014.2301176Suche in Google Scholar
7. Jacobsen G, Lidón M, Xu T, Popov S, Friberg AT, Zhang Y. Influence of pre-and post-compensation of chromatic dispersion on equalization enhanced phase noise in coherent multilevel systems. J Opt Commun. 2011;32:257–61.10.1515/JOC.2011.053Suche in Google Scholar
8. Jansen SL, Morita I, Schenk TCW, Takeda N. Coherent optical 25. 8-Gb/s OFDM transmission over 4160-km SSMF. J Lightwave Technol. 2008;26:6–15.10.1109/JLT.2007.911888Suche in Google Scholar
9. Wu S, Bar-Ness Y. A phase noise suppression algorithm for OFDM-based WLANs. IEEE Commun Lett. 2002;6:535–37.10.1109/LCOMM.2002.806468Suche in Google Scholar
10. Hussin S, Puntsri K, Noe R. Improvement of RF-pilot phase noise compensation for coherent optical OFDM systems via CPE equalizer. In: Optoelectronics and communication conference and Australian conference on communication technology, IEEE, 2013:771–73.10.1109/NOC.2012.6249928Suche in Google Scholar
11. Yi XYX, Shieh W, Tang YTY. Phase Estimation for Coherent Optical OFDM. IEEE Photonics Technol Lett. 2007;19:919–21.10.1109/LPT.2007.897572Suche in Google Scholar
12. Yi X, Shieh W, Ma Y. Phase noise effects on high spectral efficiency coherent optical OFDM transmission. J Light Technol. 2008;26:1309–16.10.1109/JLT.2008.919368Suche in Google Scholar
13. Stojanovic N, Mao B, Karinou F. Efficient and low-complexity chromatic dispersion estimation in coherent optical systems. In: 21st Telecommunication Forum, 2013:153–56.10.1109/TELFOR.2013.6716195Suche in Google Scholar
14. Ahmed F, Khandoker RH, Islam K. Database based phase noise compensation in CO-OFDM transmission. Int J Eng Sci Technol. 2011;3:866–70.Suche in Google Scholar
15. Shieh W. Maximum-likelihood phase and channel estimation for coherent optical OFDM. IEEE Photonics Technol Lett. 2008;20:605–07.10.1109/LPT.2008.918873Suche in Google Scholar
16. Mousa-Pasandi ME, Plant DV. Zero-overhead phase noise compensation via decision-directed phase equalizer for coherent optical OFDM. Opt Express. 2010;18:20651–60.10.1364/OE.18.020651Suche in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance Analysis of Homodyne-Based FSO System Using Various Optical Amplifiers
- Combined Effect of ASE Noise and SRS Induced Crosstalk on the BER Performance of a Single Span WDM System with Raman Amplifier Using Heterodyne Coherent Detection
- Devices
- Design of a High-Quality Optical Filter Based on 2D Photonic Crystal Ring Resonator for WDM Systems
- Reflective Detection Method of Partial Discharge Using Optical Fiber Sensor
- Fibers
- Effect of Soft Glass Rod Infiltration in the Core of Photonic Crystal Fiber
- Prediction of First Higher Order Modal Field for Graded Index Fiber in Presence of Kerr Nonlinearity
- Extremely Low Loss of Photonic Crystal Fiber for Terahertz Wave Propagation in Optical Communication Applications
- Networks
- Evaluation of Network Blocking Probability and Network Utilization Efficiency on Proposed Elastic Optical Network using RSA Algorithms
- Performance Analysis of a Novel 2-D Code in the Network Access Segment
- Systems
- To Decrease Maintenance Issues using FWM in Ultradense WDM Systems and Enhancing Optimum Placement of Optical Phase Conjugation
- Simulation-Based Optical Threshold Component Design for Mitigating Four-Wave Mixing Effects in WDM Radio Over Fiber Systems
- PAPR Reduction in OFDM Signal by Incorporating Mu-Law Companding Approach into Enhanced PTS Scheme
- Performance Analysis of Laser Phase Noise Compensated COOFDM System
- Performance Analysis of a Multiple Subcarrier Modulated FSO Communication System using Direct Detection Optical Receiver under the Effect of Weak Atmospheric Turbulence
- Analysis of Free Space Optics Link Performance Considering the Effect of Different Weather Conditions and Modulation Formats for Terrestrial Communication
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance Analysis of Homodyne-Based FSO System Using Various Optical Amplifiers
- Combined Effect of ASE Noise and SRS Induced Crosstalk on the BER Performance of a Single Span WDM System with Raman Amplifier Using Heterodyne Coherent Detection
- Devices
- Design of a High-Quality Optical Filter Based on 2D Photonic Crystal Ring Resonator for WDM Systems
- Reflective Detection Method of Partial Discharge Using Optical Fiber Sensor
- Fibers
- Effect of Soft Glass Rod Infiltration in the Core of Photonic Crystal Fiber
- Prediction of First Higher Order Modal Field for Graded Index Fiber in Presence of Kerr Nonlinearity
- Extremely Low Loss of Photonic Crystal Fiber for Terahertz Wave Propagation in Optical Communication Applications
- Networks
- Evaluation of Network Blocking Probability and Network Utilization Efficiency on Proposed Elastic Optical Network using RSA Algorithms
- Performance Analysis of a Novel 2-D Code in the Network Access Segment
- Systems
- To Decrease Maintenance Issues using FWM in Ultradense WDM Systems and Enhancing Optimum Placement of Optical Phase Conjugation
- Simulation-Based Optical Threshold Component Design for Mitigating Four-Wave Mixing Effects in WDM Radio Over Fiber Systems
- PAPR Reduction in OFDM Signal by Incorporating Mu-Law Companding Approach into Enhanced PTS Scheme
- Performance Analysis of Laser Phase Noise Compensated COOFDM System
- Performance Analysis of a Multiple Subcarrier Modulated FSO Communication System using Direct Detection Optical Receiver under the Effect of Weak Atmospheric Turbulence
- Analysis of Free Space Optics Link Performance Considering the Effect of Different Weather Conditions and Modulation Formats for Terrestrial Communication