Startseite Evaluation of Network Blocking Probability and Network Utilization Efficiency on Proposed Elastic Optical Network using RSA Algorithms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of Network Blocking Probability and Network Utilization Efficiency on Proposed Elastic Optical Network using RSA Algorithms

  • Deepak Sharma EMAIL logo und Suresh Kumar
Veröffentlicht/Copyright: 18. Januar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Elastic optical networks (EONs) are new generation optical networks that provide flexible bandwidth and spectrum assignment characteristics to accommodate diverse demand range over traditional dense wavelength division multiplexing (DWDM)-based networks. While overcoming spectrum contiguity and continuity constraints, Routing and Spectrum Assignment (RSA) is a challenging task in EONs. In this article, we have proposed an EON network model. Using existing RSA techniques we have analyzed the performance of the proposed model on the basis of Network Blocking Probability (NBP) and Network Utilization Efficiency (NUE) under variable load conditions. It has been found to be working optimally even at a load of 200 Erlangs.

References

1. Sharma D, Kumar S An overview of elastic optical networks and its enabling technologies. Int J Eng Technol (IJET) 2017;9(3):1643–49 ISSN 0975-4024. DOI:10.21817/ijet/2017/v9i3/170903022.Suche in Google Scholar

2. Khodashenas PS, Pomares D, Perello J, Spadaro S, Comellas J. A comparison of Elastic and Multi-Rate Optical Networks performance. In: 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014.10.1109/ICTON.2014.6876268Suche in Google Scholar

3. Zhang G, Leenheer MD, Morea A, Mukherjee B A survey on OFDM-based elastic core optical networking. IEEE Commun Surveys Tuts. 2013;15(1):65–87, 1st Quart.10.1109/SURV.2012.010912.00123Suche in Google Scholar

4. Meng F, Gong X, Jingjing W. A novel combined channel estimation algorithm for elastic optical networks. In: Photonic Network Communications, 2016.10.1007/s11107-016-0610-ySuche in Google Scholar

5. Christodoulpous K, Tomkos I, Varvarigos E. Elastic bandwidth allocation in flexible OFDM-based optical networks. J Lightwave Technol. 2011;29(9):1354–66.10.1109/JLT.2011.2125777Suche in Google Scholar

6. Yang H, Zhang J, Ji Y, Tian R, Han J, Lee Y. Performance evaluation of multi stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect. Opt Express. 2015;23(24):31192–205.10.1364/OE.23.031192Suche in Google Scholar PubMed

7. Yang H, Zhang J, Zhao Y, Yuefeng J, Han J, Lin Y, et al. CSO: cross stratum optimization for optical as a service. IEEE Commun Mag. 2015;53(8):130–39.10.1109/MCOM.2015.7180520Suche in Google Scholar

8. Yang H, Zhang J, Zhao Y, Han J, Lin Y, Lee Y. SUDOI: software defined networking for ubiquitous data center optical interconnection. IEEE Commun Mag. 2016;54(2):86–95.10.1109/MCOM.2016.7402266Suche in Google Scholar

9. Wang Y, Cao X, Pan Y. A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks. In: IEEE Int. Conf. on Computer Communications, 2011.10.1109/INFCOM.2011.5934939Suche in Google Scholar

10. Rini DP, Shamsuddin SM, Yuhaniz SS. Particle Swarm optimization: technique, system and challenges. Int J Comput Appl. 2011;14(1):0975–8887.10.5120/ijais-3651Suche in Google Scholar

11. Christodoulopoulos K, Tomkos I, Varvarigos EA, Routing and spectrum allocation in OFDM-based optical networks with elastic bandwidth allocation. In: IEEE Global Telecommunications Conf., 2010.10.1109/GLOCOM.2010.5684008Suche in Google Scholar

12. Sone Y, Hirano A, Kadohata A, Jinno M, Ishida O. Routing and spectrum assignment algorithm maximizes spectrum utilization in optical networks. In: European Conf. and Exhibition on Optical Communication, 2011.10.1364/ECOC.2011.Mo.1.K.3Suche in Google Scholar

13. Casellas R, Munozu R, Fabrega JM, Moreolo MS, Martinez R, Liu L, et al. Design and experimental validation of a GMPLS/PCE control plane for elastic CO-OFDM optical networks. IEEE J Sel Areas Commun. 2013;31(1):49–61.10.1109/JSAC.2013.130106Suche in Google Scholar

14. Pages A, Perello J, Spadaro S. Lightpath fragmentation for efficient spectrum utilization in dynamic elastic optical networks. In: Int. Conf. on Optical Networking Design and Modeling, Colchester, UK, 2012.10.1109/ONDM.2012.6210270Suche in Google Scholar

15. Zhu Z, Lu W, Zhang L, Ansari N. Dynamic service provisioning in elastic optical networks with hybrid single-multi-path routing. J Lightwave Technol. 2013;31(1):15–22.10.1109/JLT.2012.2227683Suche in Google Scholar

16. Wan X, Hua N, Zheng X. Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks. J Opt Commun Netw. 2012;4(8):603–13.10.1364/JOCN.4.000603Suche in Google Scholar

17. Wang X, Kuang K, Wang S, Xu S, Liu H, Liu GN. Dynamic routing and spectrum allocation in elastic optical networks with mixed line rates. J Opt Commun Network, Opt Soc America. 2014;6(12). DOI:http://dx.doi.org/10.1364/JOCN.6.001115Suche in Google Scholar

18. Guo H, Li Y, Li L, Shen G. Adaptive modulation and regeneration-aware routing and spectrum assignment in sbpp-based elastic optical networks. IEEE Photonic J. 2017;9(2). DOI:10.1109/JPHOT.2017.2685418Suche in Google Scholar

19. Sócrates-Dantas J, Careglio D, Perelló J, Silveira RM, Ruggiero WV, Solè-Pareta J. Challenges and requirements of a control plane for elastic optical networks. Comput Netw. 2014;72:156–7110.1016/j.comnet.2014.07.007Suche in Google Scholar

20. Talebi S, Alam F, Katib I, Khamis M, Salama R, Rouskas G N. Spectrum management techniques for elastic optical networks: a survey. Opt Switching Netw 2014;13:34–4810.1016/j.osn.2014.02.003Suche in Google Scholar

21. Pedrola O, Castro A, Velasco L, Ruiz M, Fernández-Palacios JP, Careglio D. CAPEX study for a multilayer IP/MPLSOver-flexgrid optical network. J Opt Commun Networking 2012;4. DOI:10.1364/JOCN.4.000639.Suche in Google Scholar

22. Sanderson C, Curtin R. Armadillo: a template-based C++ library for linear algebra. J Open Source Software. 2016;1:26.10.21105/joss.00026Suche in Google Scholar

Received: 2017-11-16
Accepted: 2017-12-27
Published Online: 2018-01-18
Published in Print: 2020-04-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Performance Analysis of Homodyne-Based FSO System Using Various Optical Amplifiers
  4. Combined Effect of ASE Noise and SRS Induced Crosstalk on the BER Performance of a Single Span WDM System with Raman Amplifier Using Heterodyne Coherent Detection
  5. Devices
  6. Design of a High-Quality Optical Filter Based on 2D Photonic Crystal Ring Resonator for WDM Systems
  7. Reflective Detection Method of Partial Discharge Using Optical Fiber Sensor
  8. Fibers
  9. Effect of Soft Glass Rod Infiltration in the Core of Photonic Crystal Fiber
  10. Prediction of First Higher Order Modal Field for Graded Index Fiber in Presence of Kerr Nonlinearity
  11. Extremely Low Loss of Photonic Crystal Fiber for Terahertz Wave Propagation in Optical Communication Applications
  12. Networks
  13. Evaluation of Network Blocking Probability and Network Utilization Efficiency on Proposed Elastic Optical Network using RSA Algorithms
  14. Performance Analysis of a Novel 2-D Code in the Network Access Segment
  15. Systems
  16. To Decrease Maintenance Issues using FWM in Ultradense WDM Systems and Enhancing Optimum Placement of Optical Phase Conjugation
  17. Simulation-Based Optical Threshold Component Design for Mitigating Four-Wave Mixing Effects in WDM Radio Over Fiber Systems
  18. PAPR Reduction in OFDM Signal by Incorporating Mu-Law Companding Approach into Enhanced PTS Scheme
  19. Performance Analysis of Laser Phase Noise Compensated COOFDM System
  20. Performance Analysis of a Multiple Subcarrier Modulated FSO Communication System using Direct Detection Optical Receiver under the Effect of Weak Atmospheric Turbulence
  21. Analysis of Free Space Optics Link Performance Considering the Effect of Different Weather Conditions and Modulation Formats for Terrestrial Communication
Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0204/html
Button zum nach oben scrollen