Home Technology Ultra-low Loss with Single Mode Polymer-Based Photonic Crystal Fiber for THz Waveguide
Article
Licensed
Unlicensed Requires Authentication

Ultra-low Loss with Single Mode Polymer-Based Photonic Crystal Fiber for THz Waveguide

  • Shuvo Sen , Md. Shadidul Islam , Bikash Kumar Paul , Md. Ibadul Islam , Sawrab Chowdhury , Kawsar Ahmed EMAIL logo , Md. Rabiul Hasan , Muhammad Shahin Uddin and Sayed Asaduzzaman
Published/Copyright: September 2, 2017
Become an author with De Gruyter Brill

Abstract

In this article, a low loss circular photonic crystal fiber (C-PCF) has been suggested as Terahertz (THz) waveguide. Both the core and cladding vicinity of the suggested PCF are constituted by circular-shaped air holes. The optical properties such as effective material loss, effective area, core power fraction and V-parameter have numerically been probed by utilizing full vectorial finite element method (FEM) with perfectly matched layers (FMLs) boundary condition. The reported PCF reveals low absorption loss and large effective area of 0.04 cm−1 and 2.80×10−07 m2 respectively at 1 THz operating frequency. In addition, the core power fraction of the fiber is about 50.83 % at the same activation frequency. The V-parameter shows that the proposed PCF acts as a single mode over 0.70 to 1.15 THz frequency. So, the reported PCF offers the best performance in long distance communication applications.

Acknowledgments

The authors are grateful to those who participated in this research work.

  1. Funding: There is no funding for this research.

  2. Competing interests: The authors declare that they have no competing interest.

References

1. Awad MM, Cheville RA. Transmission terahertz waveguide based imaging below the diffraction limit. Appl Phys Lett 2005;86(22):221107–1–221107-3. DOI:10.1063/1.1942637.Search in Google Scholar

2. Zhang JQ, Grischkowsky D. Waveguide terahertz time-domain spectroscopy of nanometer water layers. Opt Lett 2004;29(14):617–1619. DOI:10.1364/OL.29.001617.Search in Google Scholar

3. Islam R, Habib MS, Hasanuzzaman GK, Rana S, Sadath MA, Markos C. A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photo Techn Lett 2016;28(14):1537–1540. DOI:10.1109/LPT.2016.2550205.Search in Google Scholar

4. Cook DJ, Decker BK, Allen MG. Quantitative THz spectroscopy of explosive materials. In: OSA Conference, USA 2005; PSI-SR- 1196. DOI: 10.1364/OTST.2005.MA6.Search in Google Scholar

5. Ho L, Pepper M, Taday P. Terahertz spectroscopy: signatures and fingerprints. Nat Photonics 2008;2(9):541. DOI:10.1038/nphoton.2008.174.Search in Google Scholar

6. Fukunaga K, Sekine N, Hosako I, Oda N, Yoneyama H, Sudou T. Realtime terahertz imaging for art conservation science. J Eur Opt Soc Rapid Publ 2008;3:08027. DOI:10.2971/jeos.2008.08027.Search in Google Scholar

7. Kawase K, Ogawa Y, Watanabe Y, Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express 2003;11(20):2549–2554. DOI:10.1364/OE.11.002549.Search in Google Scholar

8. Chen N, Liangand J, Ren L. High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance. Appl Opt 2013;52(21):5297–5302. DOI:10.1364/AO.52.005297.Search in Google Scholar PubMed

9. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, et al. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 2017;50(4):043001. DOI:iopscience.iop.org/0022-3727/50/4/043001.10.1088/1361-6463/50/4/043001Search in Google Scholar

10. Mendis R, Grischkowsky D. Plastic ribbon THz waveguides. J Appl Phys 2000;88(7):4449–4451. DOI:10.1063/1.1310179.Search in Google Scholar

11. Lai CH, You B, Lu JY, Liu TA, Peng JL, Sun CK, et al. Modal characteristics of anti-resonant reflecting pipe waveguides for terahertz waveguiding. Opt Express 2010;18(1):309–322. DOI:10.1364/OE.18.000309.Search in Google Scholar PubMed

12. Wang K, Mittleman DM. Guided propagation of terahertz pulses on metal wires. J Opt Soc Am B 2005;22(9):2001–2008. DOI:10.1364/JOSAB.22.002001.Search in Google Scholar

13. Hasan MR, Islam MA, Anower MS, Razzak SM. Low-loss and bend-insensitive terahertz fiber using a rhombic-shaped core. Appl Opt 2016;55(30):8441–8447. DOI:10.1364/AO.55.008441.Search in Google Scholar PubMed

14. Bao HL, Nielsen K, Rasmussen HK, Jepsen PU, Bang O. Fabrication and characterization of porous-core honeycomb bandgap THz fibers. Opt Express 2012;20(28):29507–29517. DOI:10.1364/OE.20.029507.Search in Google Scholar PubMed

15. Markos C, Stefani A, Nielsen K, Rasmussen HK, Yuan W, Bang O. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt Express 2013;21(4):4758–4765. DOI:10.1364/OE.21.004758.Search in Google Scholar PubMed

16. Woyessa G, Fasano A, Stefani A, Markos C, Nielsen K, Rasmussen HK, et al. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt Express 2016;24(2):1253–1260. DOI:10.1364/OE.24.001253.Search in Google Scholar PubMed

17. Yuan W, Khan L, Webb DJ, Kalli K, Rasmussen HK, Stefani A, et al. Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt Express 2011;19(20):19731–19739. DOI:10.1364/OE.19.019731.Search in Google Scholar PubMed

18. Islam R, Rana S, Ahmad R, Kaijage SF. Bend-insensitive and low-loss porous core spiral terahertz fiber. IEEE Photon Technol Lett 2015;27(21):2242–2245. DOI:10.1109/LPT.2015.2457941.Search in Google Scholar

19. Hasan MR, Islam MA, Rifat AA. A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J Eur Opt Soc Rapid Publ 2016;12(1):15. DOI:10.1186/s41476-016-0017-5.Search in Google Scholar

20. Rana S, Hasanuzzaman GK, Habib S, Kaijage SF, Islam R. Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Opt Eng 2014;53(11):115107–115107. DOI:10.1117/1.OE.53.11.115107.Search in Google Scholar

21. Hasan MR, Anower MS, Islam MA, Razzak SM. Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl Opt 2016;55(15):4145–4152. DOI:10.1364/AO.55.004145.Search in Google Scholar PubMed

22. Hasan MI, Razzak SM, Hasanuzzaman GK, Habib MS. Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photon Technol Lett 2014;26(23):2372–2375. DOI:10.1109/LPT.2014.2356492.Search in Google Scholar

23. Islam R, Hasanuzzaman GK, Habib MS, Rana S, Khan MA. Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Optical Fiber Technol 2015;24:38–43. DOI:10.1016/j.yofte.2015.04.006.Search in Google Scholar

24. Ademgil H. Highly sensitive octagonal photonic crystal fiber based sensor. Optik 2014;125(2):6274–6278. DOI:10.1016/j.ijleo.2014.08.018.Search in Google Scholar

25. Mortensen NA, Folkenberg JR, Nielsen MD, KHansen KP. Modal cutoff and the V parameter in photonic crystal fibers. Opt Lett 2003;28(20):1879–1881. DOI:10.1364/OL.28.001879.Search in Google Scholar PubMed

26. Ahmed K, Chowdhury S, Paul BK, Islam MS, Sen S, Islam MI, et al. Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl Opt 2017;56(12):3477–3483. DOI:10.1364/AO.56.003477.Search in Google Scholar PubMed

27. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A, et al. Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter. Opt Express 2012;20(28):29751–29760. DOI:10.1364/OE.20.029751.Search in Google Scholar PubMed

Received: 2017-06-22
Accepted: 2017-08-10
Published Online: 2017-09-02
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Performance Optimization of Optical Amplifiers for High Speed Multilink Optical Networks using Different Modulation Techniques
  4. Investigations of Different Amplifiers in 16 × 40 Gb/S WDM System
  5. Effect of Crosstalk in Super Dense Wavelength Division Multiplexing System using Hybrid Optical Amplifier
  6. Evaluation of Gain Spectrum of Silica-Based Single/Dual-Pumped Thulium-Doped Fiber Amplifier (TDFA) by Optimizing Its Physical and Pumping Parameters in the Scenario of Dense Wavelength Division Multiplexed Systems (DWDM)
  7. Devices
  8. Design of One-Bit Magnitude Comparator using Photonic Crystals
  9. A Novel Scheme for UDWDM-PON Broadband Access Network Using Injection-Locked Phase-to-Intensity Modulation Converter
  10. Loss-Less Elliptical Channel Drop Filter for WDM Applications
  11. Investigations with Reversible Feynman Gate and Irreversible Logic Schematics
  12. Analysis and Design of Coherent Combining of two Q-Switched Fiber Laser in Mach-Zehnder Type Cavity
  13. Fibers
  14. Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation
  15. Ultra-low Loss with Single Mode Polymer-Based Photonic Crystal Fiber for THz Waveguide
  16. Measurements
  17. Investigation on Full Duplex WDM Hybrid Sensor to Measure the Strain
  18. Networks
  19. An Easy In-Service Optical IP Network System for Residential Complex, Employing 1550 nm-Band CWDM and Layer-3 Switch
  20. Systems
  21. High-Speed 120 Gbps AMI-WDM-PDM Free Space Optical Transmission System
  22. Impact of Different Modulation Data Formats on DWDM System Using SOA With Narrow-Channel Spacing
  23. Analysis of Atmospheric Turbulence on Free Space Optical System using Homotopy Perturbation Method
  24. Visible Light Communication – The Journey So Far
  25. Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA
  26. Performance Analysis of 2-D Prime Codes Encoded Optical CDMA System
  27. An Approximation for BER of Optical Wireless System under Weak Atmospheric Turbulence using Point Estimate
Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0104/html
Scroll to top button