Home Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation
Article
Licensed
Unlicensed Requires Authentication

Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation

  • Md. Ibadul Islam , Kawsar Ahmed EMAIL logo , Shuvo Sen , Bikash Kumar Paul , Md. Shadidul Islam , Sawrab Chowdhury , Md. Rabiul Hasan , Muhammad Shahin Uddin , Sayed Asaduzzaman and Ali Newaz Bahar
Published/Copyright: August 9, 2017
Become an author with De Gruyter Brill

Abstract

A photonic crystal fiber in square lattice architecture is numerically investigated and proposed for broadband dispersion compensation in optical transmission system. Simulation results reveal that it is possible to obtain an ultra-high negative dispersion of about −571.7 to −1889.7 (ps/nm.km) in the wavelength range of 1340 nm to 1640 nm. Experimentally it is demonstrated that the design fiber covers a high birefringence of order 4.74×10‒3 at the wavelength of 1550 nm. Here, numerical investigation of guiding properties and geometrical properties of the proposed PCF are conducted using the finite element method (FEM) with perfectly match layers. Moreover, it is established more firmly that the proposed fiber successfully compensates the chromatic dispersion of standard single mode in entire band of interest. Our result is attractive due to successfully achieve ultra-high negative dispersion that is more promisor than the prior best results.

Funding statement: There is no funding for this research.

Acknowledgments

The authors are grateful to those who participated in this research work.

  1. Authors contributions: MII, BKP, KA designed and performed simulations, analyzed data and finally drafted the manuscript. MSI, SC, SS, SA, MRI, MSU, ANB performed simulations and prepared the revised manuscript. KA, MII edited and finalized the manuscript to be published. All authors read and approved the final manuscript.

  2. Competing interests: The authors declare that they have no competing interest.

References

1. Soussi S. Modeling photonic crystal fibers. Adv Appl Math 2006 Mar 1;6:288–317. DOI:10.1016/j.aam.2005.06.002.Search in Google Scholar

2. Knight JC, Birks TA, Russell PSJ, Atkin DM. All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 1996 Oct 1;21:1547–9. DOI:10.1364/OL.21.001547.Search in Google Scholar

3. Birks TA, Knight JC, Russell PSJ. Endlessly single-mode photonic crystal fiber. Opt Lett 1997 Jul 1;22:961–3. DOI:10.1364/OL.22.000961.Search in Google Scholar PubMed

4. Knight JC. Photonic band gap guidance in optical fibers. Science 1998 Nov 20;282:1476–8. DOI:10.1126/science.282.5393.1476.Search in Google Scholar PubMed

5. Cregan RF. Single-mode photonic band gap guidance of light in air. Science 1999 Sep 3;285:1537–9. DOI:10.1126/science.285.5433.1537.Search in Google Scholar PubMed

6. Knight JC, Birks TA, Cregan RF, Russell PSJ, Sandro J. Large mode area photonic crystal fibre. Electron Lett 1998 Jun 25;34:1347–8. DOI:10.1049/el:19980965.Search in Google Scholar

7. Mortensen NA, Nielsen MD, Folkenberg JR, Petersson A, Simonsen HR. Improved large-mode-area endlessly single-mode photonic crystal fibers. Opt Lett 2003 Mar 15;28:393–5. DOI:10.1364/OL.28.000393.Search in Google Scholar

8. Ademgil H, Haxha S. Endlessly single mode photonic crystal fiber with improved effective mode area. Opt Commun 2012 Mar 15;285:1514–8. DOI:10.1016/j.optcom.2011.10.067.Search in Google Scholar

9. Liu Y, Wang J, Li Y, Wang R, Li J, Xie X. A novel hybrid photonic crystal dispersion compensating fiber with multiple windows. Opt Laser Technol 2012 Oct 31;44:2076–9. DOI:10.1016/j.optlastec.2012.03.023.Search in Google Scholar

10. Yang TJ, Shen LF, Chau YF, Sung MJ, Chen D, Tsai DP. High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding. Opt Commun 2008 Sep 1;281:4334–8. DOI:10.1016/j.optcom.2008.05.008.Search in Google Scholar

11. Razzak SA, Namihira Y, Hossain MA, Khaleque A. Designing birefringence of index-guiding non-hexagonal photonic crystal fibers. J Opt 2011 Jun 1;40:56. DOI:10.1007/s12596-011-0034-0.Search in Google Scholar

12. Bhattacharya R, Konar S. Extremely large birefringence and shifting of zero dispersion wavelength of photonic crystal fibers. Opt Laser Technol 2012 Oct 31;44:2210–6. DOI:10.1016/j.optlastec.2012.02.036.Search in Google Scholar

13. Koshiba M, Saitoh K. Structural dependence of effective area and mode field diameter for holey fibers. Opt Express 2003 Jul 28;11:1746–56. DOI:10.1364/OE.11.001746.Search in Google Scholar

14. Chaudhuri PR, Paulose V, Zhao C, Lu C. Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization. IEEE Photonics Technol Lett 2004 May;16:1301–3. DOI:10.1109/LPT.2004.826219.Search in Google Scholar

15. Eguchi M, Tsuji Y. Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode. Opt Lett 2007 Aug 1;32:2112–4. DOI:10.1364/OL.32.002112.Search in Google Scholar PubMed

16. Ferrando A, Silvestre E, Miret JJ, Andres P. Nearly zero ultraflattened dispersion in photonic crystal fibers. Opt Lett 2000 Jun 1;25:790–2. DOI:10.1364/OL.25.000790.Search in Google Scholar

17. Birks TA, Mogilevtsev D, Knight JC, Russell PS. Dispersion compensation using single-material fibers. IEEE Photonics Technol Lett 1999 Jun;11:674–6. DOI:10.1109/68.766781.Search in Google Scholar

18. Maji PS, Chaudhuri PR. Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation. Opt Commun 2014 Aug;30:134–43. DOI:10.1016/j.optcom.2014.03.048.Search in Google Scholar

19. Zsigri B, Lægsgaard J, Bjarklev A. A novel photonic crystal fibre design for dispersion compensation. J Opt A: Pure Appl Opt 2004 Jun 11;6:717. DOI:10.1088/1464-4258/6/7/010.Search in Google Scholar

20. Gerome F, Auguste JL, Blondy JM. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Opt Lett 2004 Dec 1;29:2725–7. DOI:10.1364/OL.29.002725.Search in Google Scholar PubMed

21. Yang S, Zhang Y, Peng X, Lu Y, Xie S, Li J, et al.. Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field. Opt Express 2006 Apr 3;14:3015–23. DOI:10.1364/OE.14.003015.Search in Google Scholar

22. Maji PS, Roy Chaudhuri P. Designing an ultra-negative dispersion photonic crystal fiber with square-lattice geometry. ISRN Opt 2014 Apr 1. DOI:10.1155/2014/545961.Search in Google Scholar

23. Poli F, Foroni M, Bottacini M, Fuochi M, Burani N, Rosa L, et al.. Single-mode regime of square-lattice photonic crystal fibers. Josa A 2005 Aug 1;22:1655–61. DOI:10.1364/JOSAA.22.001655.Search in Google Scholar PubMed

24. Gaeta AL. Nonlinear propagation and continuum generation in microstructured optical fibers. Opt Lett 2002 Jun 1;27:924–26. DOI:10.1364/OL.27.000924.Search in Google Scholar

25. Kim S, Kee CS, Lee CG. Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion. Opt Express 2009 May 11;17:7952–7. DOI:10.1364/OE.17.007952.Search in Google Scholar

26. Ehteshami N, Sathi V. A novel broadband dispersion compensating square-lattice photonic crystal fiber. Opt Quantum Electron 2012 Jul 1;44:323–35. DOI:10.1007/s11082-012-9541-8.Search in Google Scholar

27. Haque MM, Rahman MS, Habib MS, Razzak SM. Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik-International J Light Opt 2014 Jun 30;125:2608–11. DOI:10.1016/j.ijleo.2013.11.063.Search in Google Scholar

28. Hasan MI, Habib MS, Habib MS, Razzak SA. Design of hybrid photonic crystal fiber: Polarization and dispersion properties. Photonics Nanostruct Fundam Appl 2014 Apr 30;12:205–11. DOI:10.1016/j.photonics.2014.02.002.Search in Google Scholar

29. Hasan MR, Islam MA, Rifat AA, Hasan MI. A single-mode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. J Mod Opt 2017 Feb 4;64:218–25. DOI:10.1080/09500340.2016.1224941.Search in Google Scholar

30. Mortensen NA, Folkenberg JR, Nielsen MD, Hansen KP. Modal cutoff and the V parameter in photonic crystal fibers. Opt Lett 2003 Oct 15;28:1879–81. DOI:10.1364/OL.28.001879.Search in Google Scholar

31. Razzak SA, Namihira Y. Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding. J Lightwave Technol 2008 Jul 1;26:1909–14.10.1109/JLT.2008.922323Search in Google Scholar

32. Habib MS, Habib MS, Hasan MI, Razzak SA. Tailoring polarization maintaining broadband residual dispersion compensating octagonal photonic crystal fibers. Opt Eng 2013 Nov 1;52:116111-. DOI:10.1117/1.OE.52.11.116111.Search in Google Scholar

33. Habib MS, Habib MS, Razzak SA, Hossain MA. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt Fiber Technol 2013 Oct 31;19:461–7. DOI:10.1016/j.yofte.2013.05.014.Search in Google Scholar

34. Lee JH, Teh PC, Yusoff Z, Ibsen M, Belardi W, Monro TM, et al.. A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photonics Technol Lett 2002 Jun;14:876–8. DOI:10.1109/LPT.2002.1003123.Search in Google Scholar

35. Haque MM, Rahman MS, Habib MS, Habib MS. A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics Nanostruct Fundam Appl 2015 Apr 30;14:63–70. DOI:10.1016/j.photonics.2015.01.006.Search in Google Scholar

36. Islam M. Broadband dispersion compensation of single mode fiber by using modified Decagonal Photonic crystal fiber having high birefringence. J Lasers, Opt Photonics 2015 Oct 20;02 DOI:10.4172/2469-410X.1000123.Search in Google Scholar

37. Liao J, Yang F, Xie Y, Wang X, Huang T, Xiong Z, et al.. Ultrahigh birefringent nonlinear slot silicon microfiber with low dispersion. IEEE Photonics Technol Lett 2015 Sep 1;27:1868–71. DOI:10.1109/LPT.2015.2443986.Search in Google Scholar

38. Knight JC. Photonic crystal fibres. Nature 2003 Aug 14;424:847–51. DOI:10.1038/nature01940.Search in Google Scholar PubMed

39. Johnson SG, Villeneuve PR, Fan S, Joannopoulos JD. Linear waveguides in photonic-crystal slabs. Phys Rev B 2000 Sep 15;62:8212. DOI:10.1103/PhysRevB.62.8212.Search in Google Scholar

40. Huang Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl Phys Lett 2004 Nov 29;85:5182–4. DOI:10.1063/1.1828593.Search in Google Scholar

41. Xiao L, Jin W, Demokan MS, Ho HL, Hoo YL, Zhao C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt Express 2005 Oct 31;13:9014–22. DOI:10.1364/OPEX.13.009014.Search in Google Scholar PubMed

42. Cordeiro CM, Dos Santos EM, Cruz CB, De Matos CJ, Ferreira DS. Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications. Opt Express 2006 Sep 4;14:8403–12. DOI:10.1364/OE.14.008403.Search in Google Scholar PubMed

43. El Hamzaoui H, Ouerdane Y, Bigot L, Bouwmans G, Capoen B, Boukenter A, et al. Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter. Opt Express 2012 Dec 31;20:29751–60. DOI:10.1364/OE.20.029751.Search in Google Scholar PubMed

Received: 2017-06-14
Accepted: 2017-07-20
Published Online: 2017-08-09
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Amplifiers
  3. Performance Optimization of Optical Amplifiers for High Speed Multilink Optical Networks using Different Modulation Techniques
  4. Investigations of Different Amplifiers in 16 × 40 Gb/S WDM System
  5. Effect of Crosstalk in Super Dense Wavelength Division Multiplexing System using Hybrid Optical Amplifier
  6. Evaluation of Gain Spectrum of Silica-Based Single/Dual-Pumped Thulium-Doped Fiber Amplifier (TDFA) by Optimizing Its Physical and Pumping Parameters in the Scenario of Dense Wavelength Division Multiplexed Systems (DWDM)
  7. Devices
  8. Design of One-Bit Magnitude Comparator using Photonic Crystals
  9. A Novel Scheme for UDWDM-PON Broadband Access Network Using Injection-Locked Phase-to-Intensity Modulation Converter
  10. Loss-Less Elliptical Channel Drop Filter for WDM Applications
  11. Investigations with Reversible Feynman Gate and Irreversible Logic Schematics
  12. Analysis and Design of Coherent Combining of two Q-Switched Fiber Laser in Mach-Zehnder Type Cavity
  13. Fibers
  14. Proposed Square Lattice Photonic Crystal Fiber for Extremely High Nonlinearity, Birefringence and Ultra-High Negative Dispersion Compensation
  15. Ultra-low Loss with Single Mode Polymer-Based Photonic Crystal Fiber for THz Waveguide
  16. Measurements
  17. Investigation on Full Duplex WDM Hybrid Sensor to Measure the Strain
  18. Networks
  19. An Easy In-Service Optical IP Network System for Residential Complex, Employing 1550 nm-Band CWDM and Layer-3 Switch
  20. Systems
  21. High-Speed 120 Gbps AMI-WDM-PDM Free Space Optical Transmission System
  22. Impact of Different Modulation Data Formats on DWDM System Using SOA With Narrow-Channel Spacing
  23. Analysis of Atmospheric Turbulence on Free Space Optical System using Homotopy Perturbation Method
  24. Visible Light Communication – The Journey So Far
  25. Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA
  26. Performance Analysis of 2-D Prime Codes Encoded Optical CDMA System
  27. An Approximation for BER of Optical Wireless System under Weak Atmospheric Turbulence using Point Estimate
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2017-0095/html
Scroll to top button