Startseite All Optical High Speed Multiplexer Circuit for Verification of Proposed Gates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

All Optical High Speed Multiplexer Circuit for Verification of Proposed Gates

  • Pawan Chanalia , Amit Gupta EMAIL logo , Shaina und Surbhi Bakshi
Veröffentlicht/Copyright: 1. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An all optical communication is fast and reliable for next generation information carrying systems. For successful operation of fast data over flexible transmission line is only possible by all optical multiplexer and can serve for network. A 60 Gbps all optical multiplexer using cheap components has been realized and also tested on different speeds of input data streams. For integral and flexible multiplexer, optical semiconductor-based MZI switch taken into consideration. MZI-SOA is used to generate two logical gates outputs such as (AND)(XOR) gate. Multiplexer working is based on SOA nonlinearity properties and optical coupler. XOR logic gate contingent on cross-phase modulation in amplifier and logic AND for four-wave mixing is obtained from cross port and bar port respectively. Simulation is performed and multiplexer is tested for different launched power in tree architecture. System performance indicates that it can work for high speed (60 Gbps) and different data entities.

References

1. Matsumoto A, Nishimura K, Utaka K, Usami M. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE J Quantum Electron 2006;42:313–23.10.1109/JQE.2006.869809Suche in Google Scholar

2. Hattori M, Nishimura K, Inohara R, Usami M. Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter. IEEE J Lightwave Technol 2007;25:512–19.10.1109/JLT.2006.888232Suche in Google Scholar

3. Connelly MJ. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J Quantum Electron 2001;37:439–47.10.1109/3.910455Suche in Google Scholar

4. Frazão O, Santos JL, Araujo FM, Ferreira LA. Optical sensing with photonic crystal fibers. Laser Photon 2008;2(6):449–59.10.1002/lpor.200810034Suche in Google Scholar

5. Rosenberg A. GaN-based photonic crystals and integrated optics. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuAA6, 2006.Suche in Google Scholar

6. Thylen L, Qiu M, Anand S. Photonic crystals – a step towards integrated circuits for photonics. J Chem Phys Chem 2004;5(9):1268–83.10.1002/cphc.200301075Suche in Google Scholar PubMed

7. Notomi N, Shinya A, Mitsugi S, Kuramochi E, Ryu HY. Resonators and their coupled elements in photonic crystal slab. Opt Express 2004;12(8):1551–61.10.1364/OPEX.12.001551Suche in Google Scholar PubMed

8. Kuang W, Kim WJ, Mock A, O’Brien JD. Propagation loss of line-defect photonic crystal slab waveguides. IEEE J Sel Top Quantum Electron 2006;12(6):1183–95.10.1109/JSTQE.2006.884785Suche in Google Scholar

9. Tanabe T, Notomi M, Shinya A, Mitsugi S, Kuramochi E. Fast on-chip all optical switches and memories using silicon photonic crystal with extremely low operating energy. Quantum Electronics and Laser Science Conference (QELS’05), QPDA5, Baltimore, May 22–27, 2005.Suche in Google Scholar

10. Hosomi K, Katsuyama T. A dispersion compensator using coupled defects in a photonic crystal. IEEE J Quantum Electron 2002;38(7):825–9.10.1109/JQE.2002.1017593Suche in Google Scholar

11. Fan S, Villeneuve PR, Joannopoulos JD, Haus HA. Channel drop filters in photonic crystals. Opt Express 1998;3(1):4–11.10.1364/OE.3.000004Suche in Google Scholar PubMed

12. Gupta A, Kaler RS, Singh H. An inimitable scheduling technique for optical burst switched networks. Opt Int J Light Electron Opt 2013;124(8):689–92.10.1016/j.ijleo.2012.01.010Suche in Google Scholar

13. Gupta A, Kaler RS, Singh H. Investigation of OBS assembly technique based on various scheduling techniques for maximizing throughput. Opt Int J Light Electron Opt 2013;124(9):840–4.10.1016/j.ijleo.2012.01.044Suche in Google Scholar

14. Saini S, Gupta A. Modeling and performance analysis of DWDM based 100 Gbps low power inter-satellite optical wireless communication (LP-IsOWC) system. SOP Trans Signal Process 2015;2(1):1–4.10.15764/STSP.2015.01001Suche in Google Scholar

15. Gupta A. An efficient signaling framework based on multiple time slots for OBS networks. SOP Trans Signal Process 2015;2(1):7–16.10.15764/STSP.2015.01002Suche in Google Scholar

16. Sarup V, Gupta A. A study of various trends and enabling technologies in radio over fiber (RoF) systems. Optik Int J Light Electron Opt 2015;126(20):2606–11.10.1016/j.ijleo.2015.06.028Suche in Google Scholar

17. Gupta A, Singh H. Comparison of various scheduling techniques in OBS networks. Int J Electron Commun Eng 2012;5(2):143–9.Suche in Google Scholar

18. Gupta A, Bakshi S, Shaina, Chaudhary M. Performance Analysis of Free Space Optics link using array of receivers in various weather conditions of plain and hilly areas. Int J Adv Res Artif Intell 2016;5(3):18–25.10.14569/IJARAI.2016.050304Suche in Google Scholar

19. Shaina, Gupta A. Comparative analysis of free space optical communication system for various optical transmission windows under adverse weather conditions. Elsevier Proc 2016;89:99–106.10.1016/j.procs.2016.06.014Suche in Google Scholar

Received: 2016-11-20
Accepted: 2016-12-22
Published Online: 2017-2-1
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2016-0152/html
Button zum nach oben scrollen