Abstract
Lithium niobate (LiNbO3) nanostructures are synthesized on n-silicon substrate by spin coating technique with stirrer times; 8 h, 24 h and 48 h. LiNbO3 is characterized and analyzed by Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), X-ray diffraction (XRD) and UV-visible and Photoluminescence (PL). The measurements show that as stirrer time increases, the structures start to crystallize to become more regular distribution, which helps to apply in optical waveguides. In addition, the calculated refractive index and optical dielectric constant are in agreement with experimental data.
References
1. Grilli S. Ferroelectric domain engineering and characterization for photonic applications. Doctoral Thesis. Stockholm: Department of Physics, Royal Institute of Technology, 2006.Search in Google Scholar
2. Marenna E, Aruta C, Fanelli E, Barra M, Pernice P, Aronne A. Sol–gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix. J Solid State Chem 2009;182:1229–34.10.1016/j.jssc.2009.02.022Search in Google Scholar
3. Kumar P, Babu SM, Perero S, Sai RL, Bhaumik I, Morthy SG, et al. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction and refractive index analyses of Ti-doped lithium niobate (Ti: LiNbO3)nonlinear optical single crystal. Pramana J Phys 2010;75:1035–40.10.1007/s12043-010-0159-8Search in Google Scholar
4. Burr GW, Diziain S, Bernal MP. Theoretical study of lithium niobate slab waveguides for integrated optics applications. Opt Mater 2009;31:1492–7.10.1016/j.optmat.2009.02.013Search in Google Scholar
5. Meriche F, Boudrioua A, Kremer R, Dogheche E, Neiss-Clauss E, Mouras R, et al. Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation. Opt Mater 2010;32:1427–34.10.1016/j.optmat.2010.05.010Search in Google Scholar
6. Aufray M, Menuel S, Fort Y, Eschbach J, Rouxel D, Vincent B. New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis. J Nanosci Nanotechnol 2009;9:4780–5.10.1166/jnn.2009.1087Search in Google Scholar PubMed
7. Cao L, Aboketaf A, Wang Z, Preble S. Hybrid amorphous silicon (a-Si: H)–LiNbO3electro-optic modulator. Opt Commun 2014;330:40–4.10.1016/j.optcom.2014.05.021Search in Google Scholar
8. Chen H, Lv T, Zheng A, Han Y. Discrete diffraction based on electro-optic effect in periodically poled lithium niobate. Opt Commun 2013;294:202–7.10.1016/j.optcom.2013.01.007Search in Google Scholar
9. Hu H, Ricken R, Sohler W. Lithium niobate photonic wires. Opt Express 2009;17:24261–8.10.1364/OE.17.024261Search in Google Scholar PubMed
10. Sun D, Liu Z, Huang Y, Ho S, Towner DJ, Wessels BW. Performance simulation for ferroelectric thin-film based waveguide electro-optic modulators. Opt Commun 2005;255:319–30.10.1016/j.optcom.2005.06.028Search in Google Scholar
11. Poberaj G, Koechlin M, Sulser F, Guarino A, Hajfler J, Günter P. Ion-sliced lithium niobate thin films for active photonic devices. Opt Mater 2009;31:1054–8.10.1016/j.optmat.2007.12.019Search in Google Scholar
12. Zhang T, Wang B, Zhao Y, Fang S, Ma D, Xu Y. Optical homogeneity and second harmonic generation in Li-rich Mg-doped LiNbO3 crystals. Mater Chem Phys 2004;88:97–101.10.1016/j.matchemphys.2004.06.026Search in Google Scholar
13. Chen L, Xu Q, Wood MG, Reano RM. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 2014;1:112–18.10.1364/OPTICA.1.000112Search in Google Scholar
14. Kim W, Kwon S-W, Jeong W, Son G, Lee K, Choi W, et al. Integrated optical modulator for signal upconversion over radio-on-fiber link. Opt Express 2009;17:2638–45.10.1364/OE.17.002638Search in Google Scholar PubMed
15. Lin R, Gao Y. Factors that influence the modulation instability in self-defocusing photorefractive crystal. Opt Commun 2012;285:2724–8.10.1016/j.optcom.2012.01.041Search in Google Scholar
16. Guo J, Zhu J, Zhou W, Huang X. A plasmonic electro-optical variable optical attenuator based on side-coupled metal–dielectric–metal structure. Opt Commun 2013;294:405–8.10.1016/j.optcom.2012.12.063Search in Google Scholar
17. Lam HK, Dai JY, Chan HLW. Orientation controllable deposition of LiNbO3 films on sapphire and diamond substrates for surface acoustic wave device application. J Cryst Growth 2004;268:144–8.10.1016/j.jcrysgro.2004.04.111Search in Google Scholar
18. Grange R, Choi J-W, Hsieh C, Pu Y, Magrez A, Smajda R, et al. Lithium niobate nanowires synthesis, optical properties, and manipulation. Appl Phys Lett 2009;95:143105-1–143107.10.1063/1.3236777Search in Google Scholar
19. Tan Y, Chen F, Stepić M, Shandarov V, Kip D. Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination. Opt Express 2008;16:10465–70.10.1364/OE.16.010465Search in Google Scholar PubMed
20. Zhou Z, Wang B, Lin S, Li Y, Wang K. Investigation of optical photorefractive properties of Zr: Fe:LiNbO3crystals. Opt Laser Technol 2012;44:337–40.10.1016/j.optlastec.2011.07.010Search in Google Scholar
21. Wang LH, Yuan DR, Duan XL, Wang XQ, Yu FP. Synthesis and characterization of fine lithium niobate powders by sol- gel method. Cryst Res Technol 2007;42:321–4.10.1002/crat.200610822Search in Google Scholar
22. Lu Y, Dekker P. Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy. J Cryst Growth 2009;311:1441–5.10.1016/j.jcrysgro.2008.12.035Search in Google Scholar
23. Akiyama Y, Shitanaka K, Murakami H, Shin Y, Yoshida M, Imaishi N. Epitaxial growth of lithium niobate film using metalorganic chemical vapor deposition. Thin Solid Films 2007;515:4975–9.10.1016/j.tsf.2006.10.034Search in Google Scholar
24. Ageba R, Kadota Y, Maeda T, Takiguchi N, Morita T. Ultrasonically-assisted hydrothermal method for ferroelectric material synthesis. J Korean Phys Soc 2010;57:918–23.10.3938/jkps.57.918Search in Google Scholar
25. Kang Y, Jeong S, Lee S, Hwang J, Kim J, Cho C. Hetero-epitaxial growth of LiNbO3 thin film on GaN/Al2O3 by pulsed laser deposition. J Korean Phys Soc 2006;49:S625–S628.Search in Google Scholar
26. Son J, Orlov SS, Phillips B, Hesselink L. Pulsed laser deposition of single phase LiNbO3 thin film waveguides. J Electroceram 2006;17:591–5.10.1007/s10832-006-8565-5Search in Google Scholar
27. Nyman M, Anderson TM, Provencio PP. Comparison of aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders. Cryst Growth Des 2009;9:1036–40.10.1021/cg800849ySearch in Google Scholar
28. Yun BK, Park YK, Lee M, Lee N, Jo W, Lee S, et al. Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation. Nanoscale Res Lett 2014;9:4–10.10.1186/1556-276X-9-4Search in Google Scholar PubMed PubMed Central
29. Wang X, Ye Z, Wu G, Cao L, Zhao B. Growth of textured LiNbO3 thin film on Si (111) substrate by pulsed laser deposition. Mater Lett 2005;59:2994–7.10.1016/j.matlet.2005.05.002Search in Google Scholar
30. Wang X, Liang Y, Tian S, Man W, Jia J. Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J Cryst Growth 2013;375:73–7.10.1016/j.jcrysgro.2013.04.020Search in Google Scholar
31. Bartasyte A, Plausinaitiene V, Abrutis A, Stanionyte S, Margueron S, Kubilius V, et al. Thickness dependent stresses and thermal expansion of epitaxial LiNbO3 thin films on C-sapphire. Mater Chem Phys 2015;149–150:622–31.10.1016/j.matchemphys.2014.11.018Search in Google Scholar
32. Lim Y, Lee S-Y. Preparation of LiNbO3 nanoparticles using poly(l-lysine) as a biomolecular additive. Mater Chem Phys 2014;144:92–7.10.1016/j.matchemphys.2013.12.019Search in Google Scholar
33. Nozawa J, Iida S, Koyama C, Maeda K, Fujiwara K, Koizumi H, et al. Partitioning of ionic species during growth of impurity-doped lithium niobate by electric current injection. J Cryst Growth 2014;406:78–84.10.1016/j.jcrysgro.2014.08.001Search in Google Scholar
34. Al-Douri Y, Khasawneh Q, Kiwan S, Hashim U, Abd Hamid SB, Reshak AH, et al. Structural and optical insights to enhance solar cell performance of CdS nanostructures. Energy Convers Manage 2014;82:238–43.10.1016/j.enconman.2014.03.020Search in Google Scholar
35. Fakhri MA, Al-Douri Y, Hashim U, Salim ET. Optical investigations of photonics lithium niobate. Solar Energy 2015;120:381–8.10.1016/j.solener.2015.07.044Search in Google Scholar
36. Ibraheam AS, Al-Douri Y, Hashim U, Ghezzar MR, Addou A, Ahmed WK. Cadmium effect on optical properties of Cu2Zn1-xCdxSnS4 quaternary alloys nanostructures. Solar Energy 2015;114:39–50.10.1016/j.solener.2015.01.018Search in Google Scholar
37. Simoes AZ, Zaghetea MA, Stojanovic BD, Riccardi CS, Ries A, Gonzalez AH, et al. LiNbO3 thin films prepared through polymeric precursor method. Mater Lett 2003;57:2333–9.10.1016/S0167-577X(02)01221-1Search in Google Scholar
38. Kumar V, Sharma SK, Sharma TP, Singh V. Band gap determination in thick films from reflectance measurements. Opt Mater 1999;12:115–19.10.1016/S0925-3467(98)00052-4Search in Google Scholar
39. Fakhri MA, Al-Douri Y, Hashim U, Salim ET, Prakash D, Verma KD. Optical investigation of nanophotonic lithium niobate-based optical waveguide. Appl Phys B Lasers Opt 2015;121:107–16. DOI: 10.1007/s00340-015-6206-x.Search in Google Scholar
40. Salim ET, Al-Douri Y, Al Wazny MS, Fakhri MA. Optical properties of Cauliflower-like Bi2O3 nanostructures by reactive pulsed laser deposition (PLD) technique. Solar Energy 2014;107:523–9.10.1016/j.solener.2014.05.020Search in Google Scholar
41. Simões AZ, González AHM, Cavalheiro AA, Zaghete MA, Stojanovic BD, Varela JA. Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Ceram Int 2002;28:265–70.10.1016/S0272-8842(01)00089-XSearch in Google Scholar
42. Jeong I-K. Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a riveted analysis. J Korean Phys Soc 2011;59:2756–9.10.3938/jkps.59.2756Search in Google Scholar
43. Balzaretti NM, da Jornad JA. Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride. Solid State Commun 1996;99:943–8.10.1016/0038-1098(96)00341-9Search in Google Scholar
44. Ravindra NM, Auluck S, Srivastava VK. On the penn gap in semiconductors. Phys Stat Sol B 1979;93:K155–K160.10.1002/pssb.2220930257Search in Google Scholar
45. Herve PJ, Vandamme LK. Empirical temperature dependence of the refractive index of semiconductors. J Appl Phys 1995;77:5476–7.10.1063/1.359248Search in Google Scholar
46. Ghosh DK, Samanta LK, Bhar GC. A simple model for evaluation of refractive indices of some binary and ternary mixed crystals. Infrared Phys 1984;24:43–7.10.1016/0020-0891(84)90046-0Search in Google Scholar
47. Al-Douri Y, Khachai H, Khenata R. Chalcogenides-based quantum dots: Optical investigation using first-principles calculations. Mater Sci Semicond Process 2015;39:276–82.10.1016/j.mssp.2015.05.016Search in Google Scholar
48. Al-Douri Y, Hashim U, Khenata R, Reshak AH, Ameri M, Bouhemadou A, et al. Ab initio method of optical investigations of CdS1-xTex alloys under quantum dots diameter effect. Solar Energy 2015;115:33–9.10.1016/j.solener.2015.02.024Search in Google Scholar
49. Al-Douri Y. Electronic and optical properties of ZnxCd1−xSe. Mater Chem Phys 2003;82:49–54.10.1016/S0254-0584(03)00192-5Search in Google Scholar
50. Al-Douri Y, Feng YP, Huan AC. Optical investigations using ultra-soft pseudopotential calculations of Si0.5Ge0.5 alloy. Solid State Commun 2008;148:521–4.10.1016/j.ssc.2008.09.055Search in Google Scholar
51. Al-Douri Y, Reshak AH, Baaziz H, Charifi Z, Khenata R, Ahmad S, et al. An ab initio study of the electronic structure and optical properties of CdS1-xTex alloys. Solar Energy 2010;84:1979–84.10.1016/j.solener.2010.10.006Search in Google Scholar
52. Penn DR. Wave-number-dependent dielectric function of semiconductors. Phys Rev 1962;128:2093–100.10.1103/PhysRev.128.2093Search in Google Scholar
53. Van Vechten JA. Quantum dielectric theory of electronegativity in covalent systems. I. electronic dielectric constant. Phys Rev 1969;182:891–905.10.1103/PhysRev.182.891Search in Google Scholar
54. Samara GA. Temperature and pressure dependences of the dielectric constants of semiconductors. Phys Rev B 1983;27:3494–505.10.1103/PhysRevB.27.3494Search in Google Scholar
55. Vasconcelos NS, Vasconcelos JS, Bouquet V, Zanetti SM, Leite ER, Longo E, et al. Epitaxial growth of LiNbO thin films in a microwave oven. Thin Solid Films 2003;436:213–19.10.1016/S0040-6090(03)00587-XSearch in Google Scholar
56. Zelmon DE, Small DL. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate. J Opt Soc Am B 1997;14:3319–23.Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- A Review on Hybrid Optical Amplifiers
- Multi-stage Mirror-Based Planar Structure for Wavelength Division Demultiplexing
- Low Loss and High-Quality Factor Optical Filter Using Photonic Crystal-Based Resonant Cavity
- All Optical High Speed Multiplexer Circuit for Verification of Proposed Gates
- Structural and Optical Properties of Nanophotonic LiNbO3 under Stirrer Time Effect
- Passively Q-switched Erbium-Doped Fiber Laser based on Graphene Oxide as Saturable Absorber
- A Method of Optical Grooming Based on Dynamic Multicast Capable of Adaptive Splitting Under Differential Delay Constraint
- A Novel Spectrum Assignment Scheme for Time-Varying Traffic in Flexgrid Optical Networks
- A QoS Control Scheme based on Software Defined Fiber-Wireless Access Network for Survivability
- A Performance Analysis of Free-Space Optical Link at 1,550 nm, 850 nm, 650 nm and 532 nm Optical Wavelengths
- Performance Investigation of Different Modulation Schemes in RoF Systems under the Influence of Self Phase Modulation
- Capacity of Optical Wireless System over Log-Normal Channels with Spatial Diversity in Presence of Atmospheric Losses
- A New Construction of Optical Zero-Correlation Zone Codes
Articles in the same Issue
- Frontmatter
- A Review on Hybrid Optical Amplifiers
- Multi-stage Mirror-Based Planar Structure for Wavelength Division Demultiplexing
- Low Loss and High-Quality Factor Optical Filter Using Photonic Crystal-Based Resonant Cavity
- All Optical High Speed Multiplexer Circuit for Verification of Proposed Gates
- Structural and Optical Properties of Nanophotonic LiNbO3 under Stirrer Time Effect
- Passively Q-switched Erbium-Doped Fiber Laser based on Graphene Oxide as Saturable Absorber
- A Method of Optical Grooming Based on Dynamic Multicast Capable of Adaptive Splitting Under Differential Delay Constraint
- A Novel Spectrum Assignment Scheme for Time-Varying Traffic in Flexgrid Optical Networks
- A QoS Control Scheme based on Software Defined Fiber-Wireless Access Network for Survivability
- A Performance Analysis of Free-Space Optical Link at 1,550 nm, 850 nm, 650 nm and 532 nm Optical Wavelengths
- Performance Investigation of Different Modulation Schemes in RoF Systems under the Influence of Self Phase Modulation
- Capacity of Optical Wireless System over Log-Normal Channels with Spatial Diversity in Presence of Atmospheric Losses
- A New Construction of Optical Zero-Correlation Zone Codes