Home Low Loss and High-Quality Factor Optical Filter Using Photonic Crystal-Based Resonant Cavity
Article
Licensed
Unlicensed Requires Authentication

Low Loss and High-Quality Factor Optical Filter Using Photonic Crystal-Based Resonant Cavity

  • Ahmadreza Vaisi , Mohammad Soroosh EMAIL logo and Alimorad Mahmoudi
Published/Copyright: January 12, 2017
Become an author with De Gruyter Brill

Abstract

Transmission efficiency and quality factor are two of the most crucial characteristics in designing optical band pass filters. In this paper, we proposed a novel structure for realizing an optical filter. For the wavelength selecting part of the filter, we employed a V-shaped resonant cavity. The obtained filter has a resonant mode at 1313 nm with transmission efficiency and quality factor as much as 97 % and 3548, respectively.

References

1. Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Opt Int J Light Electron Opt 2013;124:2639–44.10.1016/j.ijleo.2012.07.029Search in Google Scholar

2. Rezaee S, Zavvari M, Alipour-Banaei H. A novel optical filter based on H-shape photonic crystal ring resonators. Opt Int J Light Electron Opt 2015;126:2535–8.10.1016/j.ijleo.2015.06.043Search in Google Scholar

3. Robinson S, Nakkeeran R. Two dimensional Photonic Crystal Ring Resonator based Add Drop Filter for CWDM systems. Opt Int J Light Electron Opt 2013;124:3430–5.10.1016/j.ijleo.2012.10.038Search in Google Scholar

4. Roshan Entezar S. Photonic crystal wedge as a tunable multichannel filter. Superlattices Microstruct 2015;82:33–9.10.1016/j.spmi.2015.01.039Search in Google Scholar

5. Alipour-Banaei H, Jahanara M, Mehdizadeh F. T-shaped channel drop filter based on photonic crystal ring resonator. Opt Int J Light Electron Opt 2014;125:5348–51.10.1016/j.ijleo.2014.06.056Search in Google Scholar

6. Bazargani HP. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt Commun 2012;285:1848–53.10.1016/j.optcom.2011.12.002Search in Google Scholar

7. Rostami A, Banaei HA, Nazari F, Bahrami A. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Opt Int J Light Electron Opt 2011;122:1481–5.10.1016/j.ijleo.2010.05.036Search in Google Scholar

8. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. Optical wavelength demultiplexer based on photonic crystal ring resonators. Photonic Network Commun 2014;29:146–50.10.1007/s11107-014-0483-xSearch in Google Scholar

9. Mehdizadeh F, Soroosh M. A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Network Commun 2016;31:65–70.10.1007/s11107-015-0531-1Search in Google Scholar

10. Mehdizadeh F, Soroosh M, Alipour-Banaei H. An optical demultiplexer based on photonic crystal ring resonators. Opt Int J Light Electron Opt 2016;127:8706–9.10.1016/j.ijleo.2016.06.086Search in Google Scholar

11. Alipour-Banaei H, Mehdizadeh F, Serajmohammadi S, Hassangholizadeh-Kashtiban M. A 2*4 all optical decoder switch based on photonic crystal ring resonators. J Mod Opt 2014;62:430–4.10.1080/09500340.2014.957743Search in Google Scholar

12. Yanik MF, Fan S, Soljačić M, Joannopoulos JD. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett 2003;28:2506.10.1364/OL.28.002506Search in Google Scholar

13. Serajmohammadi S, Alipour-Banaei H, Mehdizadeh F. All optical decoder switch based on photonic crystal ring resonators. Opt Quantum Electron 2014;47:1109–15.10.1007/s11082-014-9967-2Search in Google Scholar

14. Wang T, Li Q, Gao D. Ultrafast polarization optical switch constructed from one-dimensional photonic crystal and its performance analysis. Chinese Sci Bull 2009;54:3663–9.10.1007/s11434-009-0403-0Search in Google Scholar

15. Liu W, Yang D, Shen G, Tian H, Ji Y. Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt Laser Technol 2013;50:55–64.10.1016/j.optlastec.2012.12.030Search in Google Scholar

16. Bao J, Xiao J, Fan L, Li X, Hai Y, Zhang T, et al. NAND gates based on photonic crystal ring resonator. Opt Commun 2014;329:109–12.10.1016/j.optcom.2014.04.076Search in Google Scholar

17. Alipour-Banaei H, Serajmohammadi S, Mehdizadeh F. All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators. Opt Int J Light Electron Opt 2014;125:5701–4.10.1016/j.ijleo.2014.06.013Search in Google Scholar

18. Andalib P, Granpayeh N. All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J Opt Soc Am B 2008;26:10.10.1364/JOSAB.26.000010Search in Google Scholar

19. Noori M, Soroosh M, Baghban H. All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt Eng 2015;54:037111.10.1117/1.OE.54.3.037111Search in Google Scholar

20. Noori M, Soroosh M. A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt Int J Light Electron Opt 2015;126:4775–81.10.1016/j.ijleo.2015.08.082Search in Google Scholar

21. Youcef Mahmoud M, Bassou G, Taalbi A, Chekroun ZM. Optical channel drop filters based on photonic crystal ring resonators. Opt Commun 2012;285:368–72.10.1016/j.optcom.2011.09.068Search in Google Scholar

22. Youcef Mahmoud M, Bassou G, Taalbi A. A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt Int J Light Electron Opt 2013;124:2864–7.10.1016/j.ijleo.2012.08.072Search in Google Scholar

23. Taalbi A, Bassou G, Youcef Mahmoud M. New design of channel drop filters based on photonic crystal ring resonators. Opt Int J Light Electron Opt 2013;124:824–7.10.1016/j.ijleo.2012.01.045Search in Google Scholar

24. Rakhshani MR, Mansouri-Birjandi MA. Realization of tunable optical filter by photonic crystal ring resonators. Opt Int J Light Electron Opt 2013;124:5377–80.10.1016/j.ijleo.2013.03.114Search in Google Scholar

25. Mehdizadeh F, Alipour-Banaei H, Serajmohammadi S. Channel-drop filter based on a photonic crystal ring resonator. J Opt 2013;15:075401.10.1088/2040-8978/15/7/075401Search in Google Scholar

26. Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. A new proposal for PCRR-based channel drop filter using elliptical rings. Physica E 2014;56:211–15.10.1016/j.physe.2013.07.018Search in Google Scholar

27. Alipour-Banaei H, Mehdizadeh F. High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Network Commun 2016.:1–7.10.1007/s11107-016-0625-4Search in Google Scholar

28. Zavvari M, Mehdizadeh F. Photonic crystal cavity with L3-defect for resonant optical filtering. Frequenz 2014;68:519–23.10.1515/freq-2014-0069Search in Google Scholar

29. Wang P, Ren C, Han P, Feng S. Multi-channel unidirectional and bidirectional wavelength filters in two dimensional photonic crystals. Opt Mater (Amst) 2015;46:195–202.10.1016/j.optmat.2015.04.018Search in Google Scholar

30. Ying C, Jing D, Jia S, Qiguang Z, Weihong B. Study on tunable filtering performance of compound defect photonic crystal with magnetic control. Opt Int J Light Electron Opt 2015;126:5353–6.10.1016/j.ijleo.2015.09.094Search in Google Scholar

31. Wang Y, Chen D, Zhang G, Wang J, Tao S. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt Commun 2016;363:13–20.10.1016/j.optcom.2015.10.070Search in Google Scholar

32. Rashki Z, Seyyed Mahdavi Chabok SJ. Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators. Opt Commun 2016.10.1016/j.optcom.2016.08.077Search in Google Scholar

33. Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 2001;8:173.10.1364/OE.8.000173Search in Google Scholar

34. Taflove A. Computational electrodynamics: the finite-difference time-domain method. Boston: Artech House, 1995.Search in Google Scholar

Received: 2016-10-6
Accepted: 2016-12-14
Published Online: 2017-1-12
Published in Print: 2018-6-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/joc-2016-0135/html
Scroll to top button