Abstract
The dielectric barrier discharge (DBD) technique based cylindrical water falling film reactor was used for degrading an azo dye methyl orange (MO). The primary conditions affecting the degradation of methyl orange were systematically investigated. After 30 min plasma treatment, the degradation rate of MO was as high as 93.7% with gas velocity of 300 mL/min and the input energy of 72.5W. The influences of initial pH and conductivity of MO solution were also explored. The results indicated that the optimum pH value was 3.02 and 99.1% removal of MO was achieved within 30 min. Three catalytic systems DBD/Fe2+, DBD/PS (persulfate) and DBD/Fe2+/PS were examined to improve the degradation rate and the chemical oxygen demand (COD) removal rate of MO. The highest degradation rate (100%) and COD removal rate (72.4%) happened in DBD/Fe2+/PS system. The degradation products were analyzed by LC-MS in DBD system and DBD/Fe2+/PS system respectively, and then the possible degradation pathways of MO were proposed.
Acknowledgement
Financial supports from the National Key R&D Program of China (2016YFB0600701) are gratefully acknowledged.
References
1 Moraes, S.G.; Freire, R.S.; Durán, N. Chemosphere 2000, 40, 369-373.10.1016/S0045-6535(99)00239-8Search in Google Scholar
2 Ledakowicz, S.; Solecka, M.; Zylla, R. J. Biotechnol. 2001, 89, 175-184.10.1016/S0168-1656(01)00296-6Search in Google Scholar
3 Bruggen, B.V.; Vreese, I.D.; Vandecasteele, C. Ind. Eng. Chem. Res. 2001, 40, 3973-3978.10.1021/ie010104ySearch in Google Scholar
4 Maheria, K.C.; Chudasama, U.V. Ind. Eng. Chem. Res. 2007, 46, 6852-6857.10.1021/ie061520rSearch in Google Scholar
5 Zeng, J.H.; Yang, B.; Wang, X.P. ; Li, Z.J.; Zhang, X.W.; Lei, L.C. Chem. Eng .J. 2015, 267, 282-288.10.1016/j.cej.2015.01.030Search in Google Scholar
6 Shakouri, A.; Heris, S.Z.; Etemad, S.G.; Mousavi, S.M. J. Mol. Liq. 2016, 216, 275-283.10.1016/j.molliq.2016.01.008Search in Google Scholar
7 Chong, M.N.; Jin, B.; Christopher, W.K. W.; Chris S. Water Res. 2010, 44, 2997-3027.10.1016/j.watres.2010.02.039Search in Google Scholar PubMed
8 Miguel,P.; Nicholas, T. N.; Suresh, C. P.; Michael, K. S.; Polycarpos, F.; Athanassios, G. K.;Patrick, S.M. D.; Jeremy, W.J. H.; J.Anthony, B.; Kevin, O’Sheaf; Mohammad, H. E.; Dionysios, D. D. Appl. Phys. B. 2012, 125, 331-349.Search in Google Scholar
9 Ge, D.M.; Zeng, Z. Q.; Arowo, M.; Zou, H.K.; Chen, J.F.; Shao, L. Chemosphere 2016, 146, 413-418.10.1016/j.chemosphere.2015.12.058Search in Google Scholar PubMed
10 Pereira, G.F.; El-Ghenymy, A.; Thiam, A.; Carlesi, C.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Brillas, E. Sep. Pur. Technol. 2016, 160, 145-151.10.1016/j.seppur.2016.01.029Search in Google Scholar
11 Arjunan, B.; Karuppan, J. Environ. Chem. Eng. 2014, 2, 557-572.10.1016/j.jece.2013.10.011Search in Google Scholar
12 Wang, T.C.; Lu, N.; An, J.T.; Zhao, Y.; Li, J.; Wu, Y.; Sep. Pur. Technol. 2012, 100, 9-14.10.1016/j.seppur.2012.08.014Search in Google Scholar
13 Dojčinović, B.P.; Manojlović, D.; Roglić, G.M.; Obradovic′, B.W.; Kuraica, M.M.; Puric′, J. Vacuum 2008, 83, 234-237.10.1016/j.vacuum.2008.04.003Search in Google Scholar
14 Magureanu, M.; Piroi, D.; Mandache, N. B.; David, V.; Medvedovici, A.; Parvulescu, V.l. Water Res. 2010, 44, 3445-3453.10.1016/j.watres.2010.03.020Search in Google Scholar PubMed
15 He, D.; Sun.Y.B.; Xin, L.; Feng, J.W. Chem. Eng. J. 2014, 258, 18-25.10.1016/j.cej.2014.07.089Search in Google Scholar
16 Jiang, B.; Zheng, J.T.; Qiu, S.; Wu, M.B.; Zhang, Q.H.; Yan, Z.F.; Xue, Q.Z. Chem. Eng. J. 2014, 236, 348-368.10.1016/j.cej.2013.09.090Search in Google Scholar
17 Feng, J.; Zheng, Z.; Sun, Y.; Luan, J.F.; Wang, Z.; Wang, L.H., Feng, J.F. J. Hazard. Mater. 2008, 154, 1081-1089.10.1016/j.jhazmat.2007.11.013Search in Google Scholar PubMed
18 Tichonovas, M.; Krugly, E.; Racys, V.; Hippier,R.; Kauneliene, V.; Stasiulaitiene, I.; Martuzevicius, D. Chem. Eng J. 2013, 229, 9-19.10.1016/j.cej.2013.05.095Search in Google Scholar
19 Krugly, E.; Martuzevicius, D.; Tichonovas, M.; Hippier, R.; Kauneliene, V.; Stasiulaitiene, I.; Martuzevicius, D. Chem. Eng J. 2015, 260, 188-198.10.1016/j.cej.2014.08.098Search in Google Scholar
20 Markovic, M.; Jovic, M.; Stankovic, D.; Kovačević, V.; Roglić, G.; Gojgić-Cvijović, G.; Manojlović, D. Sci. Total. Environ.2015, 505, 1148-1155.10.1016/j.scitotenv.2014.11.017Search in Google Scholar PubMed
21 Fang, G.D.; Dionysiou, D.D.; Zhou, D.M.; Wang, Y.; Zhu, X.D.; Fan, J.X.; Cang, L.; Wang, Y.J. Chemosphere 2013, 90, 1573-1580.10.1016/j.chemosphere.2012.07.047Search in Google Scholar PubMed
22 Liang, H .Y.; Zhang, Y.Q.; Huang, S.B.; Hussain, I. Chem. Eng.J. 2013, 218, 384-391.10.1016/j.cej.2012.11.093Search in Google Scholar
23 Yan, N.; Liu, F.; Huang, W. Chem. Eng. J. 2013, 219, 149-154.10.1016/j.cej.2012.12.072Search in Google Scholar
24 Yao, Y.; Cai, Y.; Wu, G.; Wei, F.Y.; Li, X.Y.; Chen, H.; Wang, S.B. J. Hazard. Mater. 2015, 296, 128-137.10.1016/j.jhazmat.2015.04.014Search in Google Scholar
25 Yang, S.Y.; Yang, X.; Shao, X.T.; Niu, R.; Wang, L.L. J. Hazard. Mater. 2011, 186, 659-666.10.1016/j.jhazmat.2010.11.057Search in Google Scholar
26 Baiocchia, C.; Brussino, M.C.; Pramauro, E.; Prevot, A.B.; Palmisano, L.; Marc′, G. Int. J. Mass. Spectrom. 2002, 214, 247-256.10.1016/S1387-3806(01)00590-5Search in Google Scholar
27 Reddy, P.M.K.; Mahammadunnisa, S.; Subrahmanyam, C. Chem.Eng. J. 2014, 238, 157-163.10.1016/j.cej.2013.08.087Search in Google Scholar
28 Eisenberg, G.M. Ind.Eng. Chem. 1943, 15, 327-328.Search in Google Scholar
29 Rong, S.P.; Sun, Y.B.; Zhao, Z.H. Chin. Chem. Lett. 2014, 25,187-192.10.1016/j.cclet.2013.11.003Search in Google Scholar
30 Sun, B.; Sato, M.; Clements, J.S. J. Electrostat. 1997, 39, 189-202.10.1016/S0304-3886(97)00002-8Search in Google Scholar
31 Kiwi, L.A.; Lopez, A.; Nadtochenko, V. Environ. Sci. Technol. 2000, 34, 2162-2168.10.1021/es991406iSearch in Google Scholar
32 Yang, Y.; Pignatello, J.J.; Ma, J.; Mitch, W.A. Environ.Sci.Technol. 2014, 48, 2344-2351.10.1021/es404118qSearch in Google Scholar PubMed
33 Jiang, B.; Zheng, J.T.; Liu, Q.; Wu, M.B. Chem.Eng.J. 2012, 204-206, 32-39.10.1016/j.cej.2012.07.088Search in Google Scholar
34 Dojˇcinovi´c, B.P.; Rogli´c, G. M.; Obradovi´c, B.M.; Kuraica,Μ. M.; Kosti´c, M.M.; Neˇsi´c, J.; Manojlovi´c, D. D. J. Hazard. Mater. 2011, 192, 763-771.10.1016/j.jhazmat.2011.05.086Search in Google Scholar PubMed
35 Khlyustoval, A.; Khomyakova,V.; Sirotkin, N.; Martin, Y. Plasma Chem. Plasma Process. 2016, 36, 1229-1238.10.1007/s11090-016-9732-3Search in Google Scholar
36 Jović, M.S; Dojčinović, B.P.; Kovačević, V.V.; Obradovic´, B.M.; Kuraica, M.M.; Gašic´, U.M.; Roglic´, G.M. Chem. Eng. J. 2014, 248, 63-70.10.1016/j.cej.2014.03.031Search in Google Scholar
37 Reddy, P.M.K.; Raju, B.R.; Karuppiah, J.; Reddy, E.L.; Subrahmanyam, C. Chem. Eng.J. 2013, 217, 41-47.10.1016/j.cej.2012.11.116Search in Google Scholar
38 Ao, X.W; Liu,W.J. Chem. Eng.J. 2017, 313, 629-63710.1016/j.cej.2016.12.089Search in Google Scholar
39 Liang, C.J.;Wang, Z.S.; Bruell, C.J. Chemosphere 2007, 66, 106-113.10.1016/j.chemosphere.2006.05.026Search in Google Scholar PubMed
40 Ghanbari, F.;Moradi, M. Chem. Eng.J. 2017, 310, 41-62.10.1016/j.cej.2016.10.064Search in Google Scholar
41 Zhou, Z.Y.; Zhang, X.Y.; Liu, Y.; Ma, Y.P.; Lu, S.J.; Zhang, W.; Ren, Z.Q. RSC Adv. 2015, 5, 71973-71979.10.1039/C5RA11864FSearch in Google Scholar
42 Huang, F.M.; Chen, L.; Wang, H.L.; Feng, T.Z.; Yan, Z.C. J. Electrostat. 70 2012, 70, 43-47.10.1016/j.elstat.2011.10.001Search in Google Scholar
43 Liang, C.; Wang, Z.S.; Bruell, C.J. Chemosphere 2007, 66, 106-113.10.1016/j.chemosphere.2006.05.026Search in Google Scholar
44 Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16, 27-32.10.1021/ar00085a005Search in Google Scholar
45 Peyton, G.R. Mar. Chem. 1993, 41, 91-103.10.1016/0304-4203(93)90108-ZSearch in Google Scholar
© 2017 by Walter De Gruyter GmbH and Sycamore Global Publications LLC
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Articles in the same Issue
- Editorial
- Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
- Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
- Treatment of high salinity wastewater using CWPO process for reuse
- Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
- Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
- Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
- Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
- ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
- Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
- Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
- Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
- Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
- Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
- Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
- Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
- Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
- Degradation of methyl orange using dielectric barrier discharge water falling film reactor
- Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes