Startseite On the asymptotic formulas for perturbations in the eigenvalues of the Stokes equations due to the presence of small deformable inclusions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the asymptotic formulas for perturbations in the eigenvalues of the Stokes equations due to the presence of small deformable inclusions

  • Abdessatar Khelifi ORCID logo EMAIL logo und Ahlem Jaouabi
Veröffentlicht/Copyright: 21. Oktober 2021

Abstract

In this paper, we provide a rigorous derivation of an asymptotic formula for the perturbation of eigenvalues associated to the Stokes eigenvalue problem with Dirichlet conditions and in the presence of small deformable inclusions. Taking advantage of the small sizes of the inclusions immersed in an incompressible Newtonian fluid having kinematic viscosity different from the background one, we show that our asymptotic formula can be expressed in terms of the eigenvalue in the absence of the inclusions and in terms of the viscous moment tensor (VMT).

MSC 2010: 35P05; 35Q35; 35R30

Acknowledgements

The authors are very grateful to the referees for their pertinent comments and suggestions which have served to improve the content and the form of this manuscript.

References

[1] J. H. Albert, Genericity of simple eigenvalues for elliptic PDE’s, Proc. Amer. Math. Soc. 48 (1975), 413–418. 10.2307/2040275Suche in Google Scholar

[2] Y. Amirat, G. A. Chechkin and R. R. Gadyl’shin, Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: Multiple eigenvalues, Appl. Anal. 86 (2007), no. 7, 873–897. 10.1080/00036810701461238Suche in Google Scholar

[3] H. Ammari, E. Beretta, E. Francini, H. Kang and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case, J. Math. Pures Appl. (9) 94 (2010), no. 3, 322–339. 10.1016/j.matpur.2010.02.001Suche in Google Scholar

[4] H. Ammari, P. Garapon, H. Kang and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements, Quart. Appl. Math. 66 (2008), no. 1, 139–175. 10.1090/S0033-569X-07-01089-8Suche in Google Scholar

[5] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Math. 1846, Springer, Berlin, 2004. 10.1007/b98245Suche in Google Scholar

[6] H. Ammari, H. Kang, M. Lim and H. Zribi, Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2901–2922. 10.1090/S0002-9947-10-04695-7Suche in Google Scholar

[7] H. Ammari and S. Moskow, Asymptotic expansions for eigenvalues in the presence of small inhomogeneities, Math. Methods Appl. Sci. 26 (2003), no. 1, 67–75. 10.1002/mma.343Suche in Google Scholar

[8] H. Ammari and F. Triki, Splitting of resonant and scattering frequencies under shape deformation, J. Differential Equations 202 (2004), no. 2, 231–255. 10.1016/j.jde.2004.02.017Suche in Google Scholar

[9] H. Ammari and D. Volkov, Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter, Asymptot. Anal. 30 (2002), no. 3–4, 331–350. Suche in Google Scholar

[10] I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis. Vol. II, North-Holland, Amsterdam (1991), 641–787. 10.1016/S1570-8659(05)80042-0Suche in Google Scholar

[11] E. Bonnetier, D. Manceau and F. Triki, Asymptotic of the velocity of a dilute suspension of droplets with interfacial tension, Quart. Appl. Math. 71 (2013), no. 1, 89–117. 10.1090/S0033-569X-2012-01275-7Suche in Google Scholar

[12] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2013. 10.1007/978-1-4614-5975-0Suche in Google Scholar

[13] D. J. Cedio-Fengya, S. Moskow and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems 14 (1998), no. 3, 553–595. 10.1088/0266-5611/14/3/011Suche in Google Scholar

[14] C. Daveau, A. Khelifi and I. Balloumi, Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations, Math. Phys. Anal. Geom. 20 (2017), no. 2, Paper No. 13. 10.1007/s11040-017-9243-3Suche in Google Scholar

[15] S. Jia, H. Xie, X. Yin and S. Gao, Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods, Appl. Math. 54 (2009), no. 1, 1–15. 10.1007/s10492-009-0001-0Suche in Google Scholar

[16] A. Jouabi and A. Khelifi, Complete asymptotic behavior of eigenvalues and eigenfunctions for the Stokes operator in domains with highly oscillating boundaries, preprint. Suche in Google Scholar

[17] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, New York, 1966. 10.1007/978-3-662-12678-3Suche in Google Scholar

[18] J. P. Kelliher, Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane, Pacific J. Math. 244 (2010), no. 1, 99–132. 10.2140/pjm.2010.244.99Suche in Google Scholar

[19] A. Khelifi, Asymptotic property and convergence estimation for the eigenelements of the Laplace operator, Appl. Anal. 86 (2007), no. 10, 1249–1264. 10.1080/00036810701598039Suche in Google Scholar

[20] M. Kohr, The interior Neumann problem for the Stokes resolvent system in a bounded domain in n , Arch. Mech. (Arch. Mech. Stos.) 59 (2007), no. 3, 283–304. Suche in Google Scholar

[21] V. Kozlov, On the Hadamard formula for nonsmooth domains, J. Differential Equations 230 (2006), no. 2, 532–555. 10.1016/j.jde.2006.08.004Suche in Google Scholar

[22] V. A. Kozlov and S. A. Nazarov, Asymptotics of the spectrum of the Dirichlet problem for the biharmonic operator in a domain with a deeply indented boundary, St. Petersburg Math. J. 22 (2011), no. 6, 941–983. 10.1090/S1061-0022-2011-01178-1Suche in Google Scholar

[23] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Fizmathiz, Moscow, 1961. Suche in Google Scholar

[24] J. Lagha, F. Triki and H. Zribi, Small perturbations of an interface for elastostatic problems, Math. Methods Appl. Sci. 40 (2017), no. 10, 3608–3636. 10.1002/mma.4249Suche in Google Scholar

[25] J. H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differential Equations 6 (2001), no. 8, 987–1023. 10.57262/ade/1357140555Suche in Google Scholar

[26] J. E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. 10.1090/S0025-5718-1975-0383117-3Suche in Google Scholar

[27] S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 243–257. Suche in Google Scholar

[28] S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains—the Neumann condition, Osaka J. Math. 22 (1985), no. 4, 639–655. 10.3792/pjaa.60.125Suche in Google Scholar

[29] S. Ozawa, Eigenvalues of the Laplacian under singular variation of domains—the Robin problem with obstacle of general shape, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 6, 124–125. 10.3792/pjaa.72.124Suche in Google Scholar

[30] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1979. Suche in Google Scholar

[31] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University, New York, 1948. Suche in Google Scholar

Received: 2020-07-01
Revised: 2020-11-11
Accepted: 2020-11-16
Published Online: 2021-10-21
Published in Print: 2022-06-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2067/html
Button zum nach oben scrollen