Startseite Numerical study of time delay singularly perturbed parabolic differential equations involving both small positive and negative space shifts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical study of time delay singularly perturbed parabolic differential equations involving both small positive and negative space shifts

  • Subal Ranjan Sahu und Jugal Mohapatra EMAIL logo
Veröffentlicht/Copyright: 21. Oktober 2021

Abstract

A time dependent singularly perturbed differential-difference equation is considered. The problem involves time delay and general small space shift terms. Taylor series approximation is used to expand the space shift term. A robust numerical scheme based on the backward Euler scheme for the time and classical upwind scheme for space is proposed. The convergence analysis is carried out. It is observed that the proposed scheme converges almost first order up to a logarithm term and optimal first order in space on the Shishkin and Bakhvalov–Shishkin mesh, respectively. Numerical results confirm the efficiency of the proposed scheme, which are in agreement with the theoretical bounds.

References

[1] A. R. Ansari, S. A. Bakr and G. I. Shishkin, A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math. 205 (2007), no. 1, 552–566. 10.1016/j.cam.2006.05.032Suche in Google Scholar

[2] K. Bansal, P. Rai and K. K. Sharma, Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments, Differ. Equ. Dyn. Syst. 25 (2017), no. 2, 327–346. 10.1007/s12591-015-0265-7Suche in Google Scholar

[3] K. Bansal and K. K. Sharma, Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments, Numer. Algorithms 75 (2017), no. 1, 113–145. 10.1007/s11075-016-0199-3Suche in Google Scholar

[4] W. Cheng, R. Temam and X. Wang, New approximation algorithms for a class of partial differential equations displaying boundary layer behavior, Methods Appl. Anal. 7 (2000), no. 2, 363–390. 10.4310/MAA.2000.v7.n2.a6Suche in Google Scholar

[5] C. Clavero, J. L. Gracia and J. C. Jorge, High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers, Numer. Methods Partial Differential Equations 21 (2005), no. 1, 148–169. 10.1002/num.20030Suche in Google Scholar

[6] C. Clavero, J. L. Gracia and M. Stynes, A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems, J. Comput. Appl. Math. 235 (2011), no. 17, 5240–5248. 10.1016/j.cam.2011.05.025Suche in Google Scholar

[7] L. Govindarao and J. Mohapatra, A second-order numerical method for singularly perturbed delay parabolic partial differential equation, Eng. Comput. 26 (2019), no. 2, 420–444. 10.1108/EC-08-2018-0337Suche in Google Scholar

[8] S. Gowrisankar and S. Natesan, ε-uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations, Int. J. Comput. Math. 94 (2017), no. 5, 902–921. 10.1080/00207160.2016.1154948Suche in Google Scholar

[9] V. Gupta, M. K. Kadalbajoo and R. K. Dubey, A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput. Math. 96 (2019), no. 3, 474–499. 10.1080/00207160.2018.1432856Suche in Google Scholar

[10] M. K. Kadalbajoo and A. Awasthi, A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension, Appl. Math. Comput. 183 (2006), no. 1, 42–60. 10.1016/j.amc.2006.05.023Suche in Google Scholar

[11] R. B. Kellogg and A. Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), no. 144, 1025–1039. 10.1090/S0025-5718-1978-0483484-9Suche in Google Scholar

[12] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. Suche in Google Scholar

[13] D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time-dependent singularly perturbed differential-difference equations, Appl. Math. Model. 35 (2011), no. 6, 2805–2819. 10.1016/j.apm.2010.11.074Suche in Google Scholar

[14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 23, American Mathematical Society, Providence, 1968. Suche in Google Scholar

[15] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations, SIAM J. Appl. Math. 42 (1982), no. 3, 502–531. 10.1137/0142036Suche in Google Scholar

[16] C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary value problems for differential-difference equations. III. Turning point problems, SIAM J. Appl. Math. 45 (1985), no. 5, 708–734. 10.1137/0145042Suche in Google Scholar

[17] T. Linß, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, Lecture Notes in Math. 1985, Springer, Berlin, 2010. 10.1007/978-3-642-05134-0Suche in Google Scholar

[18] X. Lu, Combined iterative methods for numerical solutions of parabolic problems with time delays, Appl. Math. Comput. 89 (1998), no. 1–3, 213–224. 10.1016/S0096-3003(97)81659-1Suche in Google Scholar

[19] K. Mukherjee and S. Natesan, Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems, Computing 92 (2011), no. 1, 1–32. 10.1007/s00607-010-0126-8Suche in Google Scholar

[20] M. Musila and P. Lansky, Generalized Stein’s model for anatomically complex neurons, Biosys. 25 (1991), no. 3, 179–191. 10.1016/0303-2647(91)90004-5Suche in Google Scholar PubMed

[21] P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002), no. 1, 73–94. 10.1016/S0025-5564(02)00099-8Suche in Google Scholar PubMed

[22] V. P. Ramesh and M. K. Kadalbajoo, Upwind and midpoint upwind difference methods for time-dependent differential difference equations and layer behavior, Appl. Math. Comput. 202 (2008), no. 2, 453–471. 10.1016/j.amc.2007.11.033Suche in Google Scholar

[23] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd ed., Springer Ser. Comput. Math. 24, Springer, Berlin, 2008. Suche in Google Scholar

[24] G. I. Shishkin and L. P. Shishkina, Difference Methods for Singular Perturbation Problems, CRC Press, Boca Raton, 2008. 10.1201/9780203492413Suche in Google Scholar

Received: 2020-07-12
Revised: 2020-12-25
Accepted: 2020-12-29
Published Online: 2021-10-21
Published in Print: 2022-06-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2064/html
Button zum nach oben scrollen