Startseite Certain classes of analytic functions defined by Hurwitz–Lerch zeta function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Certain classes of analytic functions defined by Hurwitz–Lerch zeta function

  • Bolineni Venkateswarlu ORCID logo EMAIL logo , Pinninti Thirupathi Reddy ORCID logo , Galla Swapna ORCID logo und Rompilli Madhuri Shilpa
Veröffentlicht/Copyright: 25. September 2021

Abstract

In this work, we introduce and investigate a new class k - U S ~ s ( b , μ , γ , t ) of analytic functions in the open unit disk U with negative coefficients. The object of the present paper is to determine coefficient estimates, neighborhoods and partial sums for functions f belonging to this class.

MSC 2010: 30C45

Acknowledgements

The authors would like to express sincere thanks to the esteemed referee(s) for their careful readings, valuable suggestions and comments, which helped to improve the presentation of this paper.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12–22. 10.2307/2007212Suche in Google Scholar

[2] E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, New classes of k-uniformly convex and starlike functions, Tamkang J. Math. 35 (2004), no. 3, 261–266. 10.5556/j.tkjm.35.2004.207Suche in Google Scholar

[3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446. 10.1090/S0002-9947-1969-0232920-2Suche in Google Scholar

[4] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz–Lerch zeta function, Appl. Math. Comput. 170 (2005), no. 1, 399–409. 10.1016/j.amc.2004.12.004Suche in Google Scholar

[5] C. Ferreira and J. L. López, Asymptotic expansions of the Hurwitz–Lerch zeta function, J. Math. Anal. Appl. 298 (2004), no. 1, 210–224. 10.1016/j.jmaa.2004.05.040Suche in Google Scholar

[6] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746–765. 10.1016/0022-247X(72)90081-9Suche in Google Scholar

[7] M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 803–815. 10.1080/10652460600926907Suche in Google Scholar

[8] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598–601. 10.1090/S0002-9939-1957-0086879-9Suche in Google Scholar

[9] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364–370. 10.1016/0022-247X(91)90006-LSuche in Google Scholar

[10] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138–147. 10.1006/jmaa.1993.1204Suche in Google Scholar

[11] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz–Lerch zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), no. 3, 725–733. 10.1016/S0096-3003(03)00746-XSuche in Google Scholar

[12] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz–Lerch zeta functions, Integral Transforms Spec. Funct. 17 (2006), no. 11, 817–827. 10.1080/10652460600926923Suche in Google Scholar

[13] S. Owa, T. Sekine and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput. 187 (2007), no. 1, 356–361. 10.1016/j.amc.2006.08.133Suche in Google Scholar

[14] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), no. 1, 129–137. 10.7153/jmi-03-13Suche in Google Scholar

[15] D. Răducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz–Lerch zeta function, Integral Transforms Spec. Funct. 18 (2007), no. 11–12, 933–943. 10.1080/10652460701542074Suche in Google Scholar

[16] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521–527. 10.1090/S0002-9939-1981-0601721-6Suche in Google Scholar

[17] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72–75. 10.2969/jmsj/01110072Suche in Google Scholar

[18] M. P. Santosh, R. N. Ingle, P. Thirupathi Reddy and B. Venkateswarlu, A new subclass of analytic functions defined by linear operator, Adv. in Math. Sci. J. 9 (2010), 205–217. Suche in Google Scholar

[19] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), no. 1, 221–227. 10.1006/jmaa.1997.5361Suche in Google Scholar

[20] E. M. Silvia, On partial sums of convex functions of order α, Houston J. Math. 11 (1985), no. 3, 397–404. Suche in Google Scholar

[21] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz–Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), no. 3–4, 207–216. 10.1080/10652460701208577Suche in Google Scholar

Received: 2020-07-02
Revised: 2020-10-12
Accepted: 2020-10-14
Published Online: 2021-09-25
Published in Print: 2022-06-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2059/html
Button zum nach oben scrollen