Startseite A note on the validity of the Schrödinger approximation for the Helmholtz equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on the validity of the Schrödinger approximation for the Helmholtz equation

  • Maximilian Wörner und Guido Schneider EMAIL logo
Veröffentlicht/Copyright: 3. September 2021

Abstract

Time-harmonic electromagnetic waves in vacuum are described by the Helmholtz equation

Δ u + ω 2 u = 0 for  ( x , y , z ) 3 .

For the evolution of such waves along the z-axis, a Schrödinger equation can be derived through a multiple scaling ansatz. It is the purpose of this paper to justify this formal approximation by proving bounds between this formal approximation and true solutions of the original system. The challenge of the presented validity analysis is the fact that the Helmholtz equation is ill-posed as an evolutionary system along the z-axis.

MSC 2020: 35A35; 35J05; 35Q41

References

[1] J. E. Harvey, R. G. Irvin and R. N. Pfisterer, Modeling physical optics phenomena by complex ray tracing, Optical Eng. 54 (2015), no. 3, Article ID 035105. 10.1117/1.OE.54.3.035105Suche in Google Scholar

[2] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1988. Suche in Google Scholar

[3] L. A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium, Math. USSR, Sb. 60 (1988), no. 2, 457–483. 10.1070/SM1988v060n02ABEH003181Suche in Google Scholar

[4] P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992), no. 1–2, 85–91. 10.1017/S0308210500020989Suche in Google Scholar

[5] M. Marte and S. Stenholm, Paraxial light and atom optics: The optical schrödinger equation and beyond, Phys. Rev. A. 56 (1997), 2940–2953. 10.1103/PhysRevA.56.2940Suche in Google Scholar

[6] D. Rafferty, U. H. Wagner, C. Rau, P. Chang, S. Alcock, R. Dockree and I. R. Robinson, Development of a computer model to simulate wavefront propagation, https://www.ucl.ac.uk/~ucapikr/projects/Dominic_report.pdf. Suche in Google Scholar

[7] J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, Grad. Stud. Math. 133, American Mathematical Society, Providence, 2012. 10.1090/gsm/133Suche in Google Scholar

[8] J. D. Schmidt, Numerical Simulation of Optical Wave Propagation with Examples in MATLAB, SPIE Press, Bellingham, 2010. 10.1117/3.866274Suche in Google Scholar

[9] G. Schneider, Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances, J. Differential Equations 216 (2005), no. 2, 354–386. 10.1016/j.jde.2005.04.018Suche in Google Scholar

[10] G. Schneider and H. Uecker, Nonlinear PDEs. A Dynamical Systems Approach, Grad. Stud. Math. 182, American Mathematical Society, Providence, 2017, 10.1090/gsm/182Suche in Google Scholar

[11] H. Yoda, P. Polynkin and M. Mansuripur, Beam quality factor of higher order modes in a step-index fiber, J. Lightwave Technol. 24 (2006), no. 3, Paper No. 1350. 10.1109/JLT.2005.863337Suche in Google Scholar

Received: 2020-04-20
Accepted: 2020-10-05
Published Online: 2021-09-03
Published in Print: 2022-06-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2021-2058/html
Button zum nach oben scrollen