Startseite Synthesis of poly(methyl methacrylate) microspheres using poly(2-acrylamido-2-methylpropane sulfonic acid) as a suspending agent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of poly(methyl methacrylate) microspheres using poly(2-acrylamido-2-methylpropane sulfonic acid) as a suspending agent

  • Konstantin K. Shirshin EMAIL logo , Nadezhda Yu. Ladilova , Pavel V. Kornienko , Viktoria I. Igoshina und Vladimir P. Chuev
Veröffentlicht/Copyright: 12. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(methyl methacrylate) microspheres are used in various fields of application including clinical dentistry and surgery. Creating new technological schemes and modernizing already known technologies of poly(methyl methacrylate) microspheres production have developed rapidly during the last 50 years. In this work, the influence of suspending agents (type, concentration etc.) on the average size of microspheres is shown. Poly(2-acrylamido-2-methylpropane sulfonic acid) and its sodium salt are proposed as very effective suspending agents, allowing to produce microspheres of required size under various conditions. The effect of initiator concentration and stirring speed on average size of particles is also investigated. A technological scheme is proposed in accordance to experimental data.


Corresponding author: Konstantin K. Shirshin, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minina Street, Nizhny Novgorod, 603950, Russian Federation, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

Da, W., Rui, Y., Xicai, L., Yang, S., Zhang, M., and Zhang, W. (2012). Fabrication of hierarchical microparticles by depositing the in situ synthesized surface nanoparticles on microspheres during the seed emulsion polymerization. J. Colloid Interface Sci. 367: 249–256, https://doi.org/10.1016/j.jcis.2011.10.016.Suche in Google Scholar PubMed

Deb, S. (1998). Polymers in dentistry. J. Eng. Med. 212: 453–464, https://doi.org/10.1243/0954411981534213.Suche in Google Scholar PubMed

Gao, Y., Zhang, J., Liang, J., Yuan, D., and Zhao, W. (2022). Research progress of poly(methyl methacrylate) microspheres: preparation, functionalization and application. Eur. Polym. J. 175: 111379, https://doi.org/10.1016/j.eurpolymj.2022.111379.Suche in Google Scholar

Hansen, F.K. and Ugelstad, J. (1978). Hfrticle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. Polym. Sci. Polym. Chem. 16: 1953, https://doi.org/10.1002/pol.1978.170160814.Suche in Google Scholar

Hassan, M., Asghar, M., Din, S.U., and Zafar, M.S. (2019). In thermoset polymethacrylate-based Materials for dental applications, Vol. 8. Elsevier, Amsterdam, The Netherlands, pp. 273–308.10.1016/B978-0-12-816874-5.00008-6Suche in Google Scholar

Jingshui, X., Yangchuan, K., Qian, Z., and Xianglong, H. (2013). Synthesis and properties of poly (butyl acrylate-co-methyl methacrylate) copolymer microspheres of tunable size using suspension polymerization. Compos. Interfaces 20: 165–176, https://doi.org/10.1080/15685543.2012.762732.Suche in Google Scholar

Kammona, G., Chatzi, E.Z., and Kiparissides, C. (1999). Recent developments in hardware sensors for on-line monitoring of polymerization reactors. J. Macromol. Sci., Polym. Rev. 39: 57–134, https://doi.org/10.1081/mc-100101417.Suche in Google Scholar

Ladilova, N., Kulikova, G., Kornienko, P., Shirshin, K.V., and Shirshin, K.K. (2023). Impact of conditions of methyl methacrylate suspension polymerization on the particle size distribution of the polymer. Russ. J. Appl. Chem. 96: 429–433, https://doi.org/10.1134/S1070427223040055.Suche in Google Scholar

Lichti, G., Gilbert, R.G., and Napper, D.H. (1983). The mechanisms of latex particle formation ahd growth in the emulsion polymerization of styrene using the surfactant sodiuk dodecyl sulfate. J. Polym. Sci., Polym. Chem. Ed. 21: 269, https://doi.org/10.1002/pol.1983.170210126.Suche in Google Scholar

Liyong, Z., Guoxiang, C., and Cong, F. (2003). Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization. React. Funct. Polym. 56: 167–173, https://doi.org/10.11648/j.ijmsa.20160503.17.Suche in Google Scholar

Nejatian, T., Pezeshki, S., and Yaqin Syed, A.U. (2019). Acrylic denture base materials. In: 5 advanced dental biomaterials, Cambridge, pp. 79–104.10.1016/B978-0-08-102476-8.00005-0Suche in Google Scholar

Ogura, M. (1988). Production of fine particle of highly water-absorptive resin. JP. Patent 63 186 751.Suche in Google Scholar

Shin, H.C., Oh, H.G., Lee, K., Lee, B.H., and Choe, S. (2009). Emulsion polymerization of methyl methacrylate using the reverse iodine transfer polymerization (RITP) technique. Polymer 50: 4299–4307, https://doi.org/10.1080/15685551.2013.867579.Suche in Google Scholar

Sivakumar, M. and Panduranga Rao, K. (2000). Synthesis and characterization of poly(methyl methacrylate) functional microspheres. React. Funct. Polym. 46: 29–37, https://doi.org/10.1016/S1381-5148(00)00033-X.Suche in Google Scholar

Tan, J., Zhao, G., Lu, Y., Zeng, Z., and Winnik, M.A. (2014). Synthesis of PMMA microparticles with a narrow size distribution by photoinitiated RAFT dispersion polymerization with a macromonomer as the stabilizer. Macromolecules 47: 6856–6866, https://doi.org/10.1021/ma501432s.Suche in Google Scholar

Torrisi, A., Roszkowska, A., Cutroneo, M., Silipigni, L., and Torrisi, L. (2024). Irradiation of PMMA intraocular lenses by a 365 nm UV lamp. Int. Polym. Process. 39: 490–496, https://doi.org/10.1515/ipp-2024-0029.Suche in Google Scholar

Villanova, J.C.O., Ayres, E., Carvalho, S.M., Patrĺcio, P.S., Pereira, F.V., and Oréfice, R.L. (2011). Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nano-whiskers as excipient for drug delivery. Eur. J. Pharmacol. 42: 405–416, https://doi.org/10.1016/j.ejps.2011.01.005.Suche in Google Scholar PubMed

Yangchuan, K., Tianbin, W., and Yanfeng, X. (2007). The nucleation, crystallization and dispersion behavior of PET-monodisperse SiO2 composites. Polymer 48: 3324–3336, https://doi.org/10.1016/j.polymer.2007.03.059.Suche in Google Scholar

Yangchuan, K., Guangyao, W., and Yi, W. (2008). Preparation, morphology and properties of nanocomposites of polyacrylamide copolymers with monodisperse silica. Eur. Polym. J. 44: 2448–2457, https://doi.org/10.1016/j.eurpolymj.2008.06.007.Suche in Google Scholar

Zafar, M.S. (2020). Prosthodontic applications of polymethyl methacrylate (PMMA): an update. Polymers 12: 2299, https://doi.org/10.18044/MedInform.2024112.1849.Suche in Google Scholar

Received: 2024-08-20
Accepted: 2024-12-13
Published Online: 2025-02-12
Published in Print: 2025-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2024-0108/html?lang=de
Button zum nach oben scrollen