Home Medical grade polypropylene after artificial aging in regard to the VOC emissions
Article
Licensed
Unlicensed Requires Authentication

Medical grade polypropylene after artificial aging in regard to the VOC emissions

  • Annette Rüppel EMAIL logo , Fabian Gansiniec , Hassan Ali Rida and Hans-Peter Heim
Published/Copyright: April 28, 2025
Become an author with De Gruyter Brill

Abstract

In this study, the influence of artificial aging on the mechanical and thermal properties and VOC emissions of medical grade polypropylene (PP) is investigated. For the investigations, tensile test specimens were produced on an injection molding machine. To test the long-term stability of the materials, the ASTM 1980 guideline was adopted at the temperatures of 65 °C, 90 °C and 120 °C. The thermal, mechanical and emission properties were tested using differential scanning calorimetry (DSC), tensile tests and GC-MS analysis before and after artificial aging. The results of the tensile tests show a decrease in elongation at break with increasing temperature and storage time. Similarly, the results of the DSC measurements show an increase in melting enthalpy, which indicates post-crystallization in the material. The GC-MS results show that the emissions due to artificial aging decrease with increasing temperature and storage time, so that the emissions of the samples stored at 120 °C are almost zero.


Corresponding author: Annette Rüppel, Institute of Materials Engineering, Plastics Engineering, University of Kassel, Kassel, Germany, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors (A.R., H.-P.H., F.G., H. A. R.) have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Alam, L., Piezel, B., Sicot, O., Aivazzadeh, S., Moscardelli, S., and Van-Schoors, L. (2023). UV accelerated aging of unidirectional flax composites: comparative study between recycled and virgin polypropylene matrix. Polym. Degrad. Stab. 208: 110268, https://doi.org/10.1016/j.polymdegradstab.2023.110268.Search in Google Scholar

Allen, N.S., Edge, M., He, J., Chen, W., Kikkawa, K., and Minagawa, M. (1994). Effect of processing on the thermal and photooxidative behaviour of 2-hydrobenzophenone stabilisers in polyolefine films: influece of 2,2,6,6-tetramethylpiperidine. Polym. Degrad. Stab. 44: 99–105, https://doi.org/10.1016/0141-3910(94)90039-6.Search in Google Scholar

ASTM F1980-21. (2021). Standard guide for accelerated aging of sterile barrier system and medical devices. Beuth Verlag, Berlin, Germany.Search in Google Scholar

Beel, G., Langford, B., Carslaw, N., Shaw, D., and Cowan, N. (2023). Temperature driven variations in VOC emissions from plastic products and their fate indoors: a chamber experiment and modelling study. Sci. Total Environ.: 163497, https://doi.org/10.1016/j.scitotenv.2023.163497.Search in Google Scholar PubMed

Borealis, Technical Data Sheet (2022). Polypropylene PP bormed HD810MO. Borealis, Burghausen, Germany.Search in Google Scholar

Brodzik, K., Faber, J., Łomankiewicz, D., and Gołda-Kopek, A. (2014). In-vehicle VOCs composition of unconditioned, newly produced cars. J. Environ. Sci. 26: 1052–1061, https://doi.org/10.1016/s1001-0742(13)60459-3.Search in Google Scholar PubMed

Brzozowska-Staunch, A., Rabiej, S., Fabia, J., and Nowak, J. (2014). Changes in thermal properties of isotactic polypropylene with different additives during aging process. Polymery 49: 302–307.10.14314/polimery.2014.302Search in Google Scholar

Cali, J., Hu, W., Kysor, E., and Kohlmann, O. (2021). Aging of Polypropylene random copolymers studied by NMR relaxometry. Polymer 230: 124102, https://doi.org/10.1016/j.polymer.2021.124102.Search in Google Scholar

Contact-Rodrigo, L., Haider, N., Ribes-Greus, A., and Karlsson, S. (2001). “Ultrasonication microwave assisted extraction of degradation products from degradable polyolefin blends aged in soil”. J. Appl. Polym. Sci. 79: 1101–1112, https://doi.org/10.1002/1097-4628(20010207)79:6<1101::aid-app140>3.0.co;2-v.10.1002/1097-4628(20010207)79:6<1101::AID-APP140>3.3.CO;2-MSearch in Google Scholar

Ehrenstein, G.W. and Pongratz, S. (2007). Beständigkeit von Kunststoffen. Carl Hanser Verlag GmbH & Co. KG, München, pp. 29–31.10.1007/978-3-446-41149-4Search in Google Scholar

Elvira, M., Tiemblo, P., and Gomez-Elvira, J.M. (2004). Changes in crystalline phase during the thermo-oxidation of a metallocene isotactic polypropylene. A DSC study. Polym. Degrad. Stab. 83: 509–518, https://doi.org/10.1016/j.polymdegradstab.2003.08.010.Search in Google Scholar

Espert, A., De las Heras, L., and Karlsson, S. (2005). Emission of possible odourous low molecular weight compounds in recycled biofibre/polypropylene composites monitored by head-space SPME-GC-MS. Polym. Degrad. Stab. 90: 555–562, https://doi.org/10.1016/j.polymdegradstab.2005.03.009.Search in Google Scholar

Ferhoum, R., Aberkane, M., Ouali, M.O., and Hachour, K. (2013). Analysis of thermal aging effect (hold time- crystallinity rate – mechanical property) on high density polyethylene (HDPE). Int. J. Mater. Sci. Appl. 2: 109–114.10.11648/j.ijmsa.20130203.17Search in Google Scholar

GESTRIS-Stoffdatenbank. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, http://gestris.dguv.de/(Accessed June 2024).Search in Google Scholar

Halios, C.H., Landeg-Cox, C., Lowther, S.D., Middleton, A., Marczylo, T., and Dimitroulopoulou, S. (2022). Chemicals in European residences – Part I: a review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 839: 156201, https://doi.org/10.1016/j.scitotenv.2022.156201.Search in Google Scholar PubMed

Holtkamp, D. (2016). “Emissions and odour in passenger car interiors. Global harmonization efforts on test methods, exposure scenarios and limit values”, TPE Magazine Int., Dr. Gupta Verlag: 34–39.Search in Google Scholar

Hopfer, H., Haar, N., Stockreiter, W., Sauer, C., and Leitner, E. (2012). Combining different analytical approaches to identify odor formation mechanisms in polyethylene and polypropylene. Anal. Bioanal. Chem. 402: 903–919, https://doi.org/10.1007/s00216-011-5463-8.Search in Google Scholar PubMed

Kalinka, G. (1995). Ein Beitrag zur Kristallisation gefüllter und ungefüllter Thermoplaste. Forschungsbericht 208, Bundesanstalt für Materialforschung und -prüfung, Berlin.Search in Google Scholar

Krebs, C. and Avondet, M.A. (1999). “Langzeitverhalten von Thermoplasten. Alterungsverhalten und Chemikalienbeständigkeit”. Carl Hanser Verlag, München, Wien.Search in Google Scholar

Lambropoulou, D.A., Bikiaris, D.N., and Ainali, N.M. (2021). Aging effects on low-and high-density polyethylene, polypropylene and polysterene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis. J. Anal. Appl. Pyrol. 158: 105207, https://doi.org/10.1016/j.jaap.2021.105207.Search in Google Scholar

Langer, B., Schoßig, M., Reincke, K., and Grellmann, W. (2012). Charakterisierung des Alterungsverhaltens von Polymerwerkstoffen, https://www.polymerservice_merseburg.de/fileadmin/inhalte/psm/veroeffentlichungen/Charakterisierung_des_Alterungsverhaltens_von_Polymerwerkstoffen.Search in Google Scholar

Litvinov, V.M. and Soliman, M. (2005). The effect of storage of poly(propylene) pipes under hydro-static pressure and elevated temperatures on the morphology, molecular mobility and failure behaviour. Polymer 46: 3077–3089, https://doi.org/10.1016/j.polymer.2005.01.074.Search in Google Scholar

Lomonaco, T., Manco, E., Corti, A., La Nasa, J., Ghimenti, S., Biagini, D., Di Francesco, F., Modugno, F., Ceccarini, A., Fuoco, R., et al.. (2020). Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: a neglected source of environmental pollution. J. Hazard. Mater. 394: 12259, https://doi.org/10.1016/j.jhazmat.2020.122596.Search in Google Scholar PubMed

Moll, S. (2017). Untersuchung der Auswirkungen einer thermisch-oxidativen Beanspruchung auf das Emissionsverhalten von ABS und PP und der Korrelation mit dem Alterungsgrad, Dissertation. Germany, Technische Fakultät der Friedrich-Alexander-Universität Universität Erlangen Nürnberg.Search in Google Scholar

Mourad, A.-H., Akkad, R.O., Soliman, A.A., and Madkour, T.M. (2009). Characterisation of thermally treated and untreated polyethylene–polypropylene blends using DSC, TGA and IR. Plast., Rubber Compos. 38: 265–278, https://doi.org/10.1179/146580109x12473409436625.Search in Google Scholar

N. N., PubChem, National Library of Medicine. National center of Biotechnology information, http://pubchem.ncbi.nlm.nih.gov/(Accessed June 2024).Search in Google Scholar

Piccarolo, S. (2006). Ageing of isotactic polypropylene due to morphology evolution, experimental limitations of realtime density measurements with a gradient column. Polymer 47: 5610–5622, https://doi.org/10.1016/j.polymer.2005.03.128.Search in Google Scholar

Pongratz, S. (2000). Alterung von Kunststoffen während der Verarbeitung und im Gebrauch, Dissertation. Erlangen, Technische Fakultät der Universität Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik.Search in Google Scholar

Reingruber, E., Reussner, J., Sauer, C., Standler, A., and Buchberger, W. (2011). Studies on the emission behavior of polypropylene by gas chromatography/mass spectrometry with static headspace or thermodesorption. J. Chromatogr. A 1218: 3326–3331, https://doi.org/10.1016/j.chroma.2010.11.021.Search in Google Scholar PubMed

Rjeba, B., Labzourb, A., Rjebb, A., Sayouric, S., Clairec, Y., and Perichaud, A. (2005). TG and DSC studies of natural and artificial aging of polypropylene. Physica A 358: 212–217, https://doi.org/10.1016/j.physa.2005.06.023.Search in Google Scholar

Rüppel, A., Wolff, S., and Heim, H.-P. (2023). “The impact of accelerated aging on the mechanical and thermal properties and VOC emission of polypropylene composites reinforced with glass fibers”, Int. Polym. Process. 38: 111–125, https://doi.org/10.1515/ipp-2022-4268.Search in Google Scholar

Valle´s-Lluch, A., Contat-Rodrigo, L., and Ribes-Greus, A. (2003). Differential scanning calorimetry studies on high- and low-density anealed and irradiated polyethylenes: influence of aging. J. Appl. Polym. Sci. 89: 3260–3271, https://doi.org/10.1002/app.12479.Search in Google Scholar

Van der Wal, A., Mulder, J.J., and Gaymans, R.J. (1998). Fracture of Polypropylene: the effect of crystallinity. Polymer 39: 5477–5481, https://doi.org/10.1016/s0032-3861(97)10279-8.Search in Google Scholar

Wafei, H., Lubineau, G., Yudhanto, A., Mulle, M., Schijve, W., and Verghese, N. (2016). Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP). Compos.: Part A: 41–52, https://doi.org/10.1016/j.compositesa.2016.09.014.Search in Google Scholar

Willoughby, B.G., Golby, A., Davies, J., and Cain, R. (2003). Volatile component analysis as a routine characterization tool: an approach to fingerprinting polyolefin type and process history using ATD-GC/MS. Polym. Test. 22: 553–570, https://doi.org/10.1016/s0142-9418(02)00152-6.Search in Google Scholar

Xu, K., Feng, J., Zhong, T., Zheng, Z., and Chen, T. (2015). Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. Int. Biodetorior. Biodegrad. 100: 106–115, https://doi.org/10.1016/j.ibiod.2015.02.002.Search in Google Scholar

Zrida, M., Laurent, H., Rio, G., Khlif, M., Guines, D., Masmoudi, N., and Bradai, C. (2010). High-speed tensile tests on a polypropylene material. Polym. Test. 29: 685–692, https://doi.org/10.1016/j.polymertesting.2010.05.007.Search in Google Scholar

Received: 2025-01-22
Accepted: 2025-03-28
Published Online: 2025-04-28
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2025-0005/html
Scroll to top button