Home Spectroscopic analysis of silicone intraocular lenses by optical transmission measurements and FTIR
Article
Licensed
Unlicensed Requires Authentication

Spectroscopic analysis of silicone intraocular lenses by optical transmission measurements and FTIR

  • Alfio Torrisi EMAIL logo , Anna Maria Roszkowska , Mariapompea Cutroneo and Lorenzo Torrisi
Published/Copyright: May 23, 2025
Become an author with De Gruyter Brill

Abstract

Since the mid-20th century, intraocular lenses (IOLs) have been widely used in cataract surgery to restore vision in patients with refractive issues, replacing the natural lens of the eye. In this study, we spectroscopically characterized silicone IOLs using Fourier Transform Infrared (FTIR) spectroscopy, optical transmission measurements, and wettability investigations after exposing the lenses to UV irradiation for several hours. The results provide valuable insights into the material composition, UV protection, and overall optical quality of IOLs, which are crucial for optimizing and improving the selection of these devices for clinical use. Moreover, the experimental results explain why this material has become less commonly employed for intraocular lenses. Prolonged exposure to UV radiation induces modifications in the surface layers, increasing wettability and compromising optical properties, including a significant reduction in visible light transmittance.


Corresponding author: Alfio Torrisi, Department of Medicine and Surgery, Kore University of Enna, Enna 94100, Italy, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Alfio Torrisi wrote the paper, performed the experimental measurements, and analyzed the data. Prof. Anna Maria Roszkowska provided the analyzed intraocular lens and contributed to write the paper. Dr. Mariapompea Cutroneo has performed experimental measurements. Prof. Lorenzo Torrisi has supervised the investigations.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Alnaimat, F.A., Owida, H.A., Al Sharah, A., Alhaj, M., and Hassan, M. (2021). Silicone and pyrocarbon artificial finger joints. Appl. Bionics Biomech. 1: 534796, https://doi.org/10.1155/2021/5534796.Search in Google Scholar PubMed PubMed Central

ASTM (2016). Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of nonmetallic materials, ASTM G154-23, ASTM International, actual web site, Available at: https://cdn.standards.iteh.ai/samples/114376/cf610ff774ab475a839573d56187a16f/ASTM-G154-23.pdf.Search in Google Scholar

Atta, A. and Abdeltwab, E. (2022). Influence of ion irradiation on the surface properties of silver-coated flexible PDMS polymeric films. Braz. J. Phys. 52: 3, https://doi.org/10.1007/s13538-021-01011-5.Search in Google Scholar

Azo Materials (2025). Silicone rubber, actual website 2025 https://www.azom.com/properties.aspx?ArticleID=920.Search in Google Scholar

Bodas, D. and Khan-Malek, C. (2006). Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 83: 1277–1279, https://doi.org/10.1016/j.mee.2006.01.195.Search in Google Scholar

Bizjak, M., Selmi, C., Praprotnik, S., Bruck, O., Perricone, C., Ehrenfeld, M., and Shoenfeld, Y. (2015). Silicone implants and lymphoma: the role of inflammation. J. Autoimmun. 65: 64–73, https://doi.org/10.1016/j.jaut.2015.08.009.Search in Google Scholar PubMed

Bukalo, Nenita N., Ekosse, Georges-Ivo E., Odiyo, John O., Ogola, and Jason, S. (2017). Fourier transform infrared spectroscopy of clay size fraction of cretaceous-tertiary kaolins in the Douala Sub-Basin, Cameroon. Open Geosci. 9: 407–418, https://doi.org/10.1515/geo-2017-0031.Search in Google Scholar

Cai, W., Li, Z., Xie, J., Lv, W., and Lin, Y. (2022). Canalicular laceration repair with a novel bicanalicular silicone tube. J. Plast. Reconstr. Aesthet. Surg. 75: 4243–4248, https://doi.org/10.1016/j.bjps.2022.08.055.Search in Google Scholar PubMed

Cataract Help (2022). Vision invested, IOL information, actual website, Available at: https://www.cataracthelp.com/iol.Search in Google Scholar

Duo, S., Li, M., Zhu, M., and Zhu, M. (2008). Polydimethylsiloxane/silica hybrid coatings protecting Kapton from atomic oxygen attack. Mater. Chem. Phys. 112: 1093–1098, https://doi.org/10.1016/j.matchemphys.2008.07.036.Search in Google Scholar

EyeWiki (2025). Eyewiki, actual website, Available at: https://eyewiki.org/Comparison_of_IOL_Materials.Search in Google Scholar

Fisher Scientific (2025). Fisher scientific, actual website, Available at: https://www.fishersci.co.uk/shop/products/uvl-56-handheld-uv-lamp/11738221.Search in Google Scholar

Gedde, S.J., Schiffman, J.C., Feuer, W.J., Herndon, L.W., Brandt, J.D., and Budenz, D.L. (2012). Treatment outcomes in the Tube versus Trabeculectomy (TVT) study after five years of follow-up. Am. J. Ophthalmol. 153: 789–803, https://doi.org/10.1016/j.ajo.2011.10.026.Search in Google Scholar PubMed PubMed Central

Holland, G., Pandit, A., Sánchez-Abella, L., Haiek, A., Loinaz, I., Dupin, D., Gonzalez, M., Larra, E., Bidaguren, A., Lagali, N., et al.. (2021). Artificial cornea: past, current, and future directions. Front. Med. 8: 770780, https://doi.org/10.3389/fmed.2021.770780.Search in Google Scholar PubMed PubMed Central

Johnson, L.M., Gao, L., Shields IV, C.W., Smith, M., Efimenko, K., Cushing, K., Genzer, J., and López, G.P. (2013). Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 11, https://doi.org/10.1186/1477-3155-11-22.Search in Google Scholar PubMed PubMed Central

Kapoor, S. and Gupta, S. (2020). In: Intraocular, Lens., Wang, X., and Ferreri, Felicia M. (Eds.). Basic Science of intraocular lens material, pp. 1–9, IntechOpen: London, UK.10.5772/intechopen.92573Search in Google Scholar

Kayadurmus, H.M., Ayran, M., Goktug, S., Gunduz, O., and Dogan, C. (2025). Spectroscopic characterization of biomaterials for tissue engineering applications. Biomed. Mater. 3: 153–169, https://doi.org/10.1007/s44174-024-00177-1.Search in Google Scholar

Kohnen, T., Lambert, R.J., and Koch, D.D. (1997). Incision sizes for foldable intraocular lenses. Opthalmology 104: 1277–1286, https://doi.org/10.1016/s0161-6420(97)30147-x.Search in Google Scholar PubMed

Khan, B., Dudenhoefer, E.J., and Dohlman, C.H. (2001). Keratoprosthesis: an update. Curr. Opin. Ophthalmol. 12: 282–287, https://doi.org/10.1097/00055735-200108000-00007.Search in Google Scholar PubMed

Khoramnia, R., Yildirim Timur, M., Weindler, J., Naujokaitis, T., Dzhambazova, M., and Auffarth, G.U. (2021). Preloaded injectors used in a clinical study: videographic assessment and laboratory analysis of injector nozzle damage. J. Cataract Refract. Surg. 47: 1338–1344, https://doi.org/10.1097/j.jcrs.0000000000000587.Search in Google Scholar PubMed

Kim, Y.-A., Jeong, J.-O., and Park, J.-S. (2021). Preparation and characterization of ionic conductive poly(acrylic acid)-based silicone hydrogels for smart drug delivery system. Polymers 13: 406, https://doi.org/10.3390/polym13030406.Search in Google Scholar PubMed PubMed Central

Kleinberg, T.T., Tzekov, R.T., Stein, L., Ravi, N., and Kaushal, S. (2011). Vitreous substitutes: a comprehensive review. Surv. Ophthalmol. 56: 300–323, https://doi.org/10.1016/j.survophthal.2010.09.001.Search in Google Scholar PubMed

Kumar, A., Seenivasan, M.K., and Inbarajan, A. (2021). A literature review on biofilm formation on silicone and polymethyl methacrylate used for maxillofacial prostheses. Cureus 13: e20029, https://doi.org/10.7759/cureus.20029.Search in Google Scholar PubMed PubMed Central

Lam, M., Migonney, V., and Falentin-Daudre, C. (2020). Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater. 121: 68–88, https://doi.org/10.1016/j.actbio.2020.11.020.Search in Google Scholar PubMed

Liu, B., Liu, Z., Wei, H., Meng, Y., Hou, Q., Wang, A., Zhan, Y., Han, E., Hu, S., and Zhou, J. (2024). Performance characterization and biocompatibility assessment of silicone polyurethanes for polymer heart valve applications. RSC Adv. 14: 10858–10873, https://doi.org/10.1039/D4RA00183D.Search in Google Scholar PubMed PubMed Central

Ma, K., Rivera, J., Hirasaki, G.J., and Biswal, S.L. (2011). Wettability control and patterning of PDMS using UV–ozone and water immersion. J. Colloid Interface Sci. 363: 371–378, https://doi.org/10.1016/j.jcis.2011.07.036.Search in Google Scholar

Marmo, Alec C. and Grunlan, Melissa A. (2023). Biomedical silicones: leveraging additive strategies to propel modern utility. ACS Macro Lett. 12: 172–182, https://doi.org/10.1021/acsmacrolett.2c00701.Search in Google Scholar

Mazurek, P., Vudayagiri, S., and Skov, A.L. (2019). How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem. Soc. Rev. 48: 1448–1464, https://doi.org/10.1039/C8CS00963E.Search in Google Scholar

Merkel, T.C., Bondar, V.I., Nagai, K., Freeman, B.D., and Pinnau, I. (2000). Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. Part B:Polym. Phys. 38: 415–434, https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3C415::AID-POLB8%3E3.0.CO,2-Z.10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-ZSearch in Google Scholar

Mladenovic, T., Zivic, F., Petrovic, N., Njezic, S., Pavic, J., Kotorcevic, N., Milenkovic, S., and Grujovic, N. (2024). Application of silicone in ophthalmology: a review. Materials 17: 3454, https://doi.org/10.3390/ma17143454.Search in Google Scholar

Norrby, S., Koopmans, S., and Terwee, T. (2006). Artificial crystalline lens. Ophthalmol. Clin. North Am. 19: 143–146, https://doi.org/10.1016/j.ohc.2005.10.001.Search in Google Scholar

Pfensig, S., Arbeiter, D., Stiehm, M., Grabow, N., Schmitz, K.-P., and Siewert, S. (2022). In vitro biostability of cardiac pacemaker lead insulations under static mechanical loading. Curr. Dir. Biomed. Eng. 8: 447–450, https://doi.org/10.1515/cdbme-2022-1114.Search in Google Scholar

Planes, M., Le Coz, C., Soum, A., Carlotti, S., Rejsek-Riba, V., Lewandowski, S., Remaury, S., and Solé, S. (2016). Polydimethylsiloxane/additive systems for thermal and ultraviolet stability in geostationary environment. J. Spacecraft Rockets 53: 1–6, https://doi.org/10.2514/1.A33484.Search in Google Scholar

Rønbeck, M., Behndig, A., Taube, M., Koivula, A., and Kugelberg, M. (2013). Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up. Acta Ophthalmol 91: 66–70, https://doi.org/10.1111/j.1755-3768.2011.02277.x.Search in Google Scholar

Roman, S. and Baudouin, C. (2021). Flexible silicone artificial iris in cases of aniridia and iris deficienciesIris artificiel en silicone flexible pour aniridies et déficiences iriennes. J. Fr. Ophtalmol. 44: 1387–1395, https://doi.org/10.1016/j.jfo.2021.02.022.Search in Google Scholar

Schnyder, B., Lippert, T., Kötz, R., Wokaun, A., Graubner, V.-M., and Nuyken, O. (2023). UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf. Sci. 532–535: 1067–1071, https://doi.org/10.1016/S0039-6028(03)00148-1.Search in Google Scholar

Silex LTD (2025). Silex LTD, Gas permeability, actual website, Available at: https://www.silex.co.uk/technical-faq/gas-permeability/#:∼:text=In%20contrast%20to%20other%20elastomers%2C%20the%20gas%20permeability,and%20400%20times%20than%20that%20of%20Butyl%20rubber.Search in Google Scholar

Specac (2021). Specac, interpreting infrared spectra, actual website, Available at: https://specac.com/theory-articles/interpreting-infra-red-spectroscopy/.Search in Google Scholar

Specac (2023). Specac, everything you need to know about ATR-FTIR spectroscopy, actual website, Available at: https://specac.com/everything-you-need-to-know-about-atr-ftir-spectroscopy/#:∼:text=ATR%2DFTIR%20spectroscopy%20operates%20by,remaining%20light%20is%20reflected%20back.Search in Google Scholar

Stapleton, F., Stretton, S., Papas, E., Skotnitsky, C., and Sweeney Boptom, D.F. (2006). Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 4: 24–4, https://doi.org/10.1016/S1542-0124(12)70262-8.Search in Google Scholar PubMed

Torrisi, A., Roszkowska, A.M., Cutroneo, M., and Torrisi, L. (2024a). Irradiation of hydrophilic acrylic intraocular lenses by a 365 nm UV lamp. Open Phys. 22: 20240097, https://doi.org/10.1515/phys-2024-0097.Search in Google Scholar

Torrisi, A., Roszkowska, A.M., Silipigni, L., Cutroneo, M., and Torrisi, L. (2024b). Effects of 365 nm UV lamp irradiation of polymethylmethacrylate (PMMA). Radiat. Eff. Defects Solids 179: 264–274, https://doi.org/10.1080/10420150.2024.2318768.Search in Google Scholar

Torrisi, A., Roszkowska, A.M., Cutroneo, M., Silipigni, L., and Torrisi, L. (2024c). Irradiation of PMMA intraocular lenses by a 365 nm UV lamp. Int. Polym. Process. 39: 490–496, https://doi.org/10.1515/ipp-2024-0029.Search in Google Scholar

Trantidou, T., Elani, Y., Parsons, E., and Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 3: 16091, https://doi.org/10.1038/micronano.2016.91.Search in Google Scholar PubMed PubMed Central

Venczel, M., Bognár, G., and Veress, Á. (2021). Temperature-dependent Viscosit model for silicone oil and its application in viscous dampers. Processes 9: 331, https://doi.org/10.3390/pr9020331.Search in Google Scholar

Veritti, D., Grego, L., Samassa, F., Sarao, V., and Lanzetta, P. (2020). Scleral fixation of a single-piece foldable acrylic IOL through a 1.80 mm corneal incision. J. Cataract Refract. Surg. 46: 662–666, https://doi.org/10.1097/j.jcrs.0000000000000138.Search in Google Scholar PubMed

Volkov, D.S., Rogova, O.B., and Proskurnin, M.A. (2021). Temperature dependences of IR spectra of humic substances of Brown coal. Agronomy 11: 1822, https://doi.org/10.3390/agronomy11091822.Search in Google Scholar

Werner, L. (2007). Causes of intraocular lens opacification or discoloration. J. Cataract Refract. Surg. 33: 713–726, https://doi.org/10.1016/j.jcrs.2007.01.015.Search in Google Scholar PubMed

Werner, L. (2021). Intraocular lenses: overview of designs, materials, and pathophysiologic features. Ophthalmol. 128: e74–e93, https://doi.org/10.1016/j.ophtha.2020.06.055.Search in Google Scholar PubMed

Williams, D.F. (2008). On the mechanisms of biocompatibility. Biomaterials 29: 2941–2953, https://doi.org/10.1016/j.biomaterials.2008.04.023.Search in Google Scholar PubMed

Williams, R., Cauldbeck, H., and Kearns, V. (2024). Sustained-release drug delivery systems. Eye 9: 658–666, https://doi.org/10.1038/s41433-024-03134-w.Search in Google Scholar PubMed PubMed Central

Wolf, M.P., Salieb-Beugelaar, G.B., and Hunziker, P. (2018). PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83: 97–134, https://doi.org/10.1016/j.progpolymsci.2018.06.001.Search in Google Scholar

Yazdan Mehr, M., Van Driel, W., De, B., and Zhang, K. (2018). Study on the degradation of optical silicone exposed to harsh environments. Materials 11: 1305, https://doi.org/10.3390/ma11081305.Search in Google Scholar PubMed PubMed Central

Zare, M., Rezvani Ghomi, E., Venkatraman, Prabhuraj D., and Ramakrishna, S. (2021). Silicone-based biomaterials for biomedical applications: antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 138: 50969, https://doi.org/10.1002/app.50969.Search in Google Scholar

Received: 2025-02-15
Accepted: 2025-04-29
Published Online: 2025-05-23
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2025-0016/html
Scroll to top button