Abstract
Since the mid-20th century, intraocular lenses (IOLs) have been widely used in cataract surgery to restore vision in patients with refractive issues, replacing the natural lens of the eye. In this study, we spectroscopically characterized silicone IOLs using Fourier Transform Infrared (FTIR) spectroscopy, optical transmission measurements, and wettability investigations after exposing the lenses to UV irradiation for several hours. The results provide valuable insights into the material composition, UV protection, and overall optical quality of IOLs, which are crucial for optimizing and improving the selection of these devices for clinical use. Moreover, the experimental results explain why this material has become less commonly employed for intraocular lenses. Prolonged exposure to UV radiation induces modifications in the surface layers, increasing wettability and compromising optical properties, including a significant reduction in visible light transmittance.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Alfio Torrisi wrote the paper, performed the experimental measurements, and analyzed the data. Prof. Anna Maria Roszkowska provided the analyzed intraocular lens and contributed to write the paper. Dr. Mariapompea Cutroneo has performed experimental measurements. Prof. Lorenzo Torrisi has supervised the investigations.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
Alnaimat, F.A., Owida, H.A., Al Sharah, A., Alhaj, M., and Hassan, M. (2021). Silicone and pyrocarbon artificial finger joints. Appl. Bionics Biomech. 1: 534796, https://doi.org/10.1155/2021/5534796.Search in Google Scholar PubMed PubMed Central
ASTM (2016). Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of nonmetallic materials, ASTM G154-23, ASTM International, actual web site, Available at: https://cdn.standards.iteh.ai/samples/114376/cf610ff774ab475a839573d56187a16f/ASTM-G154-23.pdf.Search in Google Scholar
Atta, A. and Abdeltwab, E. (2022). Influence of ion irradiation on the surface properties of silver-coated flexible PDMS polymeric films. Braz. J. Phys. 52: 3, https://doi.org/10.1007/s13538-021-01011-5.Search in Google Scholar
Azo Materials (2025). Silicone rubber, actual website 2025 https://www.azom.com/properties.aspx?ArticleID=920.Search in Google Scholar
Bodas, D. and Khan-Malek, C. (2006). Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron. Eng. 83: 1277–1279, https://doi.org/10.1016/j.mee.2006.01.195.Search in Google Scholar
Bizjak, M., Selmi, C., Praprotnik, S., Bruck, O., Perricone, C., Ehrenfeld, M., and Shoenfeld, Y. (2015). Silicone implants and lymphoma: the role of inflammation. J. Autoimmun. 65: 64–73, https://doi.org/10.1016/j.jaut.2015.08.009.Search in Google Scholar PubMed
Bukalo, Nenita N., Ekosse, Georges-Ivo E., Odiyo, John O., Ogola, and Jason, S. (2017). Fourier transform infrared spectroscopy of clay size fraction of cretaceous-tertiary kaolins in the Douala Sub-Basin, Cameroon. Open Geosci. 9: 407–418, https://doi.org/10.1515/geo-2017-0031.Search in Google Scholar
Cai, W., Li, Z., Xie, J., Lv, W., and Lin, Y. (2022). Canalicular laceration repair with a novel bicanalicular silicone tube. J. Plast. Reconstr. Aesthet. Surg. 75: 4243–4248, https://doi.org/10.1016/j.bjps.2022.08.055.Search in Google Scholar PubMed
Cataract Help (2022). Vision invested, IOL information, actual website, Available at: https://www.cataracthelp.com/iol.Search in Google Scholar
Duo, S., Li, M., Zhu, M., and Zhu, M. (2008). Polydimethylsiloxane/silica hybrid coatings protecting Kapton from atomic oxygen attack. Mater. Chem. Phys. 112: 1093–1098, https://doi.org/10.1016/j.matchemphys.2008.07.036.Search in Google Scholar
EyeWiki (2025). Eyewiki, actual website, Available at: https://eyewiki.org/Comparison_of_IOL_Materials.Search in Google Scholar
Fisher Scientific (2025). Fisher scientific, actual website, Available at: https://www.fishersci.co.uk/shop/products/uvl-56-handheld-uv-lamp/11738221.Search in Google Scholar
Gedde, S.J., Schiffman, J.C., Feuer, W.J., Herndon, L.W., Brandt, J.D., and Budenz, D.L. (2012). Treatment outcomes in the Tube versus Trabeculectomy (TVT) study after five years of follow-up. Am. J. Ophthalmol. 153: 789–803, https://doi.org/10.1016/j.ajo.2011.10.026.Search in Google Scholar PubMed PubMed Central
Holland, G., Pandit, A., Sánchez-Abella, L., Haiek, A., Loinaz, I., Dupin, D., Gonzalez, M., Larra, E., Bidaguren, A., Lagali, N., et al.. (2021). Artificial cornea: past, current, and future directions. Front. Med. 8: 770780, https://doi.org/10.3389/fmed.2021.770780.Search in Google Scholar PubMed PubMed Central
Johnson, L.M., Gao, L., Shields IV, C.W., Smith, M., Efimenko, K., Cushing, K., Genzer, J., and López, G.P. (2013). Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 11, https://doi.org/10.1186/1477-3155-11-22.Search in Google Scholar PubMed PubMed Central
Kapoor, S. and Gupta, S. (2020). In: Intraocular, Lens., Wang, X., and Ferreri, Felicia M. (Eds.). Basic Science of intraocular lens material, pp. 1–9, IntechOpen: London, UK.10.5772/intechopen.92573Search in Google Scholar
Kayadurmus, H.M., Ayran, M., Goktug, S., Gunduz, O., and Dogan, C. (2025). Spectroscopic characterization of biomaterials for tissue engineering applications. Biomed. Mater. 3: 153–169, https://doi.org/10.1007/s44174-024-00177-1.Search in Google Scholar
Kohnen, T., Lambert, R.J., and Koch, D.D. (1997). Incision sizes for foldable intraocular lenses. Opthalmology 104: 1277–1286, https://doi.org/10.1016/s0161-6420(97)30147-x.Search in Google Scholar PubMed
Khan, B., Dudenhoefer, E.J., and Dohlman, C.H. (2001). Keratoprosthesis: an update. Curr. Opin. Ophthalmol. 12: 282–287, https://doi.org/10.1097/00055735-200108000-00007.Search in Google Scholar PubMed
Khoramnia, R., Yildirim Timur, M., Weindler, J., Naujokaitis, T., Dzhambazova, M., and Auffarth, G.U. (2021). Preloaded injectors used in a clinical study: videographic assessment and laboratory analysis of injector nozzle damage. J. Cataract Refract. Surg. 47: 1338–1344, https://doi.org/10.1097/j.jcrs.0000000000000587.Search in Google Scholar PubMed
Kim, Y.-A., Jeong, J.-O., and Park, J.-S. (2021). Preparation and characterization of ionic conductive poly(acrylic acid)-based silicone hydrogels for smart drug delivery system. Polymers 13: 406, https://doi.org/10.3390/polym13030406.Search in Google Scholar PubMed PubMed Central
Kleinberg, T.T., Tzekov, R.T., Stein, L., Ravi, N., and Kaushal, S. (2011). Vitreous substitutes: a comprehensive review. Surv. Ophthalmol. 56: 300–323, https://doi.org/10.1016/j.survophthal.2010.09.001.Search in Google Scholar PubMed
Kumar, A., Seenivasan, M.K., and Inbarajan, A. (2021). A literature review on biofilm formation on silicone and polymethyl methacrylate used for maxillofacial prostheses. Cureus 13: e20029, https://doi.org/10.7759/cureus.20029.Search in Google Scholar PubMed PubMed Central
Lam, M., Migonney, V., and Falentin-Daudre, C. (2020). Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces. Acta Biomater. 121: 68–88, https://doi.org/10.1016/j.actbio.2020.11.020.Search in Google Scholar PubMed
Liu, B., Liu, Z., Wei, H., Meng, Y., Hou, Q., Wang, A., Zhan, Y., Han, E., Hu, S., and Zhou, J. (2024). Performance characterization and biocompatibility assessment of silicone polyurethanes for polymer heart valve applications. RSC Adv. 14: 10858–10873, https://doi.org/10.1039/D4RA00183D.Search in Google Scholar PubMed PubMed Central
Ma, K., Rivera, J., Hirasaki, G.J., and Biswal, S.L. (2011). Wettability control and patterning of PDMS using UV–ozone and water immersion. J. Colloid Interface Sci. 363: 371–378, https://doi.org/10.1016/j.jcis.2011.07.036.Search in Google Scholar
Marmo, Alec C. and Grunlan, Melissa A. (2023). Biomedical silicones: leveraging additive strategies to propel modern utility. ACS Macro Lett. 12: 172–182, https://doi.org/10.1021/acsmacrolett.2c00701.Search in Google Scholar
Mazurek, P., Vudayagiri, S., and Skov, A.L. (2019). How to tailor flexible silicone elastomers with mechanical integrity: a tutorial review. Chem. Soc. Rev. 48: 1448–1464, https://doi.org/10.1039/C8CS00963E.Search in Google Scholar
Merkel, T.C., Bondar, V.I., Nagai, K., Freeman, B.D., and Pinnau, I. (2000). Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J. Polym. Sci. Part B:Polym. Phys. 38: 415–434, https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3C415::AID-POLB8%3E3.0.CO,2-Z.10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-ZSearch in Google Scholar
Mladenovic, T., Zivic, F., Petrovic, N., Njezic, S., Pavic, J., Kotorcevic, N., Milenkovic, S., and Grujovic, N. (2024). Application of silicone in ophthalmology: a review. Materials 17: 3454, https://doi.org/10.3390/ma17143454.Search in Google Scholar
Norrby, S., Koopmans, S., and Terwee, T. (2006). Artificial crystalline lens. Ophthalmol. Clin. North Am. 19: 143–146, https://doi.org/10.1016/j.ohc.2005.10.001.Search in Google Scholar
Pfensig, S., Arbeiter, D., Stiehm, M., Grabow, N., Schmitz, K.-P., and Siewert, S. (2022). In vitro biostability of cardiac pacemaker lead insulations under static mechanical loading. Curr. Dir. Biomed. Eng. 8: 447–450, https://doi.org/10.1515/cdbme-2022-1114.Search in Google Scholar
Planes, M., Le Coz, C., Soum, A., Carlotti, S., Rejsek-Riba, V., Lewandowski, S., Remaury, S., and Solé, S. (2016). Polydimethylsiloxane/additive systems for thermal and ultraviolet stability in geostationary environment. J. Spacecraft Rockets 53: 1–6, https://doi.org/10.2514/1.A33484.Search in Google Scholar
Rønbeck, M., Behndig, A., Taube, M., Koivula, A., and Kugelberg, M. (2013). Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up. Acta Ophthalmol 91: 66–70, https://doi.org/10.1111/j.1755-3768.2011.02277.x.Search in Google Scholar
Roman, S. and Baudouin, C. (2021). Flexible silicone artificial iris in cases of aniridia and iris deficienciesIris artificiel en silicone flexible pour aniridies et déficiences iriennes. J. Fr. Ophtalmol. 44: 1387–1395, https://doi.org/10.1016/j.jfo.2021.02.022.Search in Google Scholar
Schnyder, B., Lippert, T., Kötz, R., Wokaun, A., Graubner, V.-M., and Nuyken, O. (2023). UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry. Surf. Sci. 532–535: 1067–1071, https://doi.org/10.1016/S0039-6028(03)00148-1.Search in Google Scholar
Silex LTD (2025). Silex LTD, Gas permeability, actual website, Available at: https://www.silex.co.uk/technical-faq/gas-permeability/#:∼:text=In%20contrast%20to%20other%20elastomers%2C%20the%20gas%20permeability,and%20400%20times%20than%20that%20of%20Butyl%20rubber.Search in Google Scholar
Specac (2021). Specac, interpreting infrared spectra, actual website, Available at: https://specac.com/theory-articles/interpreting-infra-red-spectroscopy/.Search in Google Scholar
Specac (2023). Specac, everything you need to know about ATR-FTIR spectroscopy, actual website, Available at: https://specac.com/everything-you-need-to-know-about-atr-ftir-spectroscopy/#:∼:text=ATR%2DFTIR%20spectroscopy%20operates%20by,remaining%20light%20is%20reflected%20back.Search in Google Scholar
Stapleton, F., Stretton, S., Papas, E., Skotnitsky, C., and Sweeney Boptom, D.F. (2006). Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 4: 24–4, https://doi.org/10.1016/S1542-0124(12)70262-8.Search in Google Scholar PubMed
Torrisi, A., Roszkowska, A.M., Cutroneo, M., and Torrisi, L. (2024a). Irradiation of hydrophilic acrylic intraocular lenses by a 365 nm UV lamp. Open Phys. 22: 20240097, https://doi.org/10.1515/phys-2024-0097.Search in Google Scholar
Torrisi, A., Roszkowska, A.M., Silipigni, L., Cutroneo, M., and Torrisi, L. (2024b). Effects of 365 nm UV lamp irradiation of polymethylmethacrylate (PMMA). Radiat. Eff. Defects Solids 179: 264–274, https://doi.org/10.1080/10420150.2024.2318768.Search in Google Scholar
Torrisi, A., Roszkowska, A.M., Cutroneo, M., Silipigni, L., and Torrisi, L. (2024c). Irradiation of PMMA intraocular lenses by a 365 nm UV lamp. Int. Polym. Process. 39: 490–496, https://doi.org/10.1515/ipp-2024-0029.Search in Google Scholar
Trantidou, T., Elani, Y., Parsons, E., and Ces, O. (2017). Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 3: 16091, https://doi.org/10.1038/micronano.2016.91.Search in Google Scholar PubMed PubMed Central
Venczel, M., Bognár, G., and Veress, Á. (2021). Temperature-dependent Viscosit model for silicone oil and its application in viscous dampers. Processes 9: 331, https://doi.org/10.3390/pr9020331.Search in Google Scholar
Veritti, D., Grego, L., Samassa, F., Sarao, V., and Lanzetta, P. (2020). Scleral fixation of a single-piece foldable acrylic IOL through a 1.80 mm corneal incision. J. Cataract Refract. Surg. 46: 662–666, https://doi.org/10.1097/j.jcrs.0000000000000138.Search in Google Scholar PubMed
Volkov, D.S., Rogova, O.B., and Proskurnin, M.A. (2021). Temperature dependences of IR spectra of humic substances of Brown coal. Agronomy 11: 1822, https://doi.org/10.3390/agronomy11091822.Search in Google Scholar
Werner, L. (2007). Causes of intraocular lens opacification or discoloration. J. Cataract Refract. Surg. 33: 713–726, https://doi.org/10.1016/j.jcrs.2007.01.015.Search in Google Scholar PubMed
Werner, L. (2021). Intraocular lenses: overview of designs, materials, and pathophysiologic features. Ophthalmol. 128: e74–e93, https://doi.org/10.1016/j.ophtha.2020.06.055.Search in Google Scholar PubMed
Williams, D.F. (2008). On the mechanisms of biocompatibility. Biomaterials 29: 2941–2953, https://doi.org/10.1016/j.biomaterials.2008.04.023.Search in Google Scholar PubMed
Williams, R., Cauldbeck, H., and Kearns, V. (2024). Sustained-release drug delivery systems. Eye 9: 658–666, https://doi.org/10.1038/s41433-024-03134-w.Search in Google Scholar PubMed PubMed Central
Wolf, M.P., Salieb-Beugelaar, G.B., and Hunziker, P. (2018). PDMS with designer functionalities—properties, modifications strategies, and applications. Prog. Polym. Sci. 83: 97–134, https://doi.org/10.1016/j.progpolymsci.2018.06.001.Search in Google Scholar
Yazdan Mehr, M., Van Driel, W., De, B., and Zhang, K. (2018). Study on the degradation of optical silicone exposed to harsh environments. Materials 11: 1305, https://doi.org/10.3390/ma11081305.Search in Google Scholar PubMed PubMed Central
Zare, M., Rezvani Ghomi, E., Venkatraman, Prabhuraj D., and Ramakrishna, S. (2021). Silicone-based biomaterials for biomedical applications: antimicrobial strategies and 3D printing technologies. J. Appl. Polym. Sci. 138: 50969, https://doi.org/10.1002/app.50969.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- A review on industrial optimization approach in polymer matrix composites manufacturing
- A review on the effect of fiber treatment and fillers on mechanical properties of kenaf fiber–reinforced composites
- Research Articles
- Synthesis of poly(methyl methacrylate) microspheres using poly(2-acrylamido-2-methylpropane sulfonic acid) as a suspending agent
- Medical grade polypropylene after artificial aging in regard to the VOC emissions
- Optimal performance of poly-hybrid nanocomposites promoted with carbon fibers and nano silicon carbide particles via compression associated with hot pressing: characterization study
- Spectroscopic analysis of silicone intraocular lenses by optical transmission measurements and FTIR
- Preparation and properties of biodegradable antibacterial polylactic acid/modified chitin antibacterial agent composites
- Impact of domain knowledge on developing pumping models for single-screw extruders using symbolic regression
- Calibrator modelling in the simulation of extrusion process
- Strength and thermophysical properties of polylactide-few-layer graphene composites
Articles in the same Issue
- Frontmatter
- Review Articles
- A review on industrial optimization approach in polymer matrix composites manufacturing
- A review on the effect of fiber treatment and fillers on mechanical properties of kenaf fiber–reinforced composites
- Research Articles
- Synthesis of poly(methyl methacrylate) microspheres using poly(2-acrylamido-2-methylpropane sulfonic acid) as a suspending agent
- Medical grade polypropylene after artificial aging in regard to the VOC emissions
- Optimal performance of poly-hybrid nanocomposites promoted with carbon fibers and nano silicon carbide particles via compression associated with hot pressing: characterization study
- Spectroscopic analysis of silicone intraocular lenses by optical transmission measurements and FTIR
- Preparation and properties of biodegradable antibacterial polylactic acid/modified chitin antibacterial agent composites
- Impact of domain knowledge on developing pumping models for single-screw extruders using symbolic regression
- Calibrator modelling in the simulation of extrusion process
- Strength and thermophysical properties of polylactide-few-layer graphene composites