Startseite Irradiation of PMMA intraocular lenses by a 365 nm UV lamp
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Irradiation of PMMA intraocular lenses by a 365 nm UV lamp

  • Alfio Torrisi EMAIL logo , Anna Maria Roszkowska , Mariapompea Cutroneo , Letteria Silipigni und Lorenzo Torrisi
Veröffentlicht/Copyright: 3. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Intraocular lens (IOL) made on Polymethylmethacrylate (PMMA) has been irradiated by a UV lamp at different exposure times, in air and at room temperature. The macromolecular modifications induced in the lens have been investigated using attenuated total reflectance (ATR) coupled to Fourier transform infrared (FT-IR) spectroscopy and Optical spectroscopy. Particular attention was devoted to the study of chemical modifications by UV irradiation, which induced chain scissions in the superficial PMMA layers. Results demonstrated that the lens transmission to the visible radiation is not particularly reduced by a long exposition to UV radiation at a fluence of 200 mJ/cm2, up to 19 h.


Corresponding author: Alfio Torrisi, Dipartimento di Medicina e Chirurgia, Università di Enna “Kore”, 94100 Enna, Italy, E-mail:

References

ASTM (2016). Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of nonmetallic materials, ASTM G154-16, ASTM international, actual web site 2024, Available at: https://img.antpedia.com/standard/files/pdfs_ora/20200926/ASTM%20G154-16.pdf.Suche in Google Scholar

Backes, C., Religi, A., Moccozet, L., Behar-Cohen, F., Vuilleumier, L., Bulliard, J.L., and Vernez, D. (2019). Sun exposure to the eyes: predicted UV protection effectiveness of various sunglasses. J. Exposure Sci. Environ. Epidemiol. 29: 753–764, https://doi.org/10.1038/s41370-018-0087-0.Suche in Google Scholar PubMed PubMed Central

Balyeat, H.D., Nordquist, R.E., Lerner, M.P., and Gupta, A. (1989). Comparison of endothelial damage produced by control and surface modified poly(methyl methacrylate) intraocular lenses. J. Cataract Refractive Surg. 15: 491–494, https://doi.org/10.1016/s0886-3350(89)80104-x.Suche in Google Scholar PubMed

Berdie, A.D., Berdie, A.A., and Jitian, S. (2001). The degradation of thin poly(methyl methacrylate) films subjected to different destructive treatments. Int. J. Radiat. Oncol. Biol. Phys. 51: 184–208, https://doi.org/10.1007/s10965-020-02390-0.Suche in Google Scholar

Colom, X., Garcı́a, T., Suñol, J.J., Saurina, J., and Carrasco, F. (2001). Properties of PMMA artificially aged. J. Non-Cryst. Solids 287: 308–312, https://doi.org/10.1016/S0022-3093(01)00571-3.Suche in Google Scholar

Cooksley, G., Lacey, J., Dymond Markus, K., and Sandeman, S. (2021). Factors affecting posterior capsule opacification in the development of intraocular lens materials. Pharmaceutics 13: 860, https://doi.org/10.3390/pharmaceutics13060860.Suche in Google Scholar PubMed PubMed Central

Ellerin, B.E., Nisce, L.Z., Roberts, C.W., Thornell, C., Sabbas, A., Wang, H., Li, P.M., and Nori, D. (2001). The effect of ionizing radiation on intraocular lenses. Int. J. Radiat. Oncol. Biol. Phys. 51: 184–208, https://doi.org/10.1016/S0360-3016(01)01583-8.Suche in Google Scholar PubMed

Eyewiki (2024). Eyewiki, actual website, Available at: https://eyewiki.org/Comparison_of_IOL_Materials.Suche in Google Scholar

FisherScientific (2024). FisherScientific, actual web site, Available at: https://www.fishersci.co.uk/shop/products/uvl-56-handheld-uv-lamp/11738221.Suche in Google Scholar

Gomes de Castro Monsores, K., Oliveira da Silva, A., de Sant’ Ana Oliveira, S., Passos Rodrigues, J.G., and Pondé Weber, R. (2019). Influence of ultraviolet radiation on polymethylmethacrylate (PMMA). J. Mater. Res. Technol. 8: 3713–3718, https://doi.org/10.1016/j.jmrt.2019.06.023.Suche in Google Scholar

Gonçalves de Carvalho, G., Fagury Videira Marceliano-Alves, M., Hamberger Morett, V., Rueles Figueiredo, P., Avelar da Silva Ribeiro Goulart, P., Orsini, M., and Moreno, A. (2020). The use of hyaluronic acid and polymethylmethacrylate in the skin aging process in a comparative analysis (the advantages, disadvantages and adverse effects of each filler). IJAERS 7: 50–59, https://doi.org/10.22161/ijaers.72.6.Suche in Google Scholar

Henke, B.L., Gullikson, E.M., and Davis, J.C. (2024). CXRO database, actual website, Available at: https://henke.lbl.gov/optical_constants/filter2.html.Suche in Google Scholar

Luo, C., Wan, H., Chen, X., Xu, J., Yin, H., and Yao, K. (2022). Recent advances of intraocular lens materials and surface modification in cataract surgery. Front. Bioeng. Biotechnol. 10: 913383, https://doi.org/10.3389/fbioe.2022.913383.Suche in Google Scholar PubMed PubMed Central

Manoukian, O.S., Sardashti, N., Stedman, T., Gailiunas, K., Ojha, A., Penalosa, A., Mancuso, C., Hobert, M., and Kumbar, S.G. (2019). Biomaterials for tissue engineering and regenerative medicine. Encycloped. Biomed. Eng. 2019: 462–482, https://doi.org/10.1016/B978-0-12-801238-3.64098-9.Suche in Google Scholar

Moghbelli, E., Banyay, R., and Hang-Jue, S. (2014). Effect of moisture exposure on scratch resistance of PMMA. Tribol. Int. 69: 46–51, https://doi.org/10.1016/j.triboint.2013.08.012.Suche in Google Scholar

Najeeb, H.N., Balakit, A. A., Wahab, G., and Kodeary, A.K. (2014). Study of the optical properties of poly (methyl methacrylate) (PMMA) doped with a new diarylethen compound. ARInt 5: 48–56, https://doi.org/10.1016/S0022-3093(01)00571-3.Suche in Google Scholar

Ophtec (2024). Ophtec, actual website, Available at: https://www.ophtec.com/.Suche in Google Scholar

Shanti, R., Hadi, A.N., Salim, Y.S., Chee, S.Y., Ramesh, S., and Ramesha, K. (2017). Degradation of ultra-high molecular weight poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC Adv. 7: 112–120, https://doi.org/10.1039/C6RA25313J.Suche in Google Scholar

Skwira, A., Szewczyk, A., Barros, J., Laranjeira, M., Monteiro, F.J., Sądej, R., and Prokopowicz, M. (2023). Biocompatible antibiotic-loaded mesoporous silica/bioglass/collagen-based scaffolds as bone drug delivery systems. Int. J. Pharm. 645: 123408, https://doi.org/10.1016/j.ijpharm.2023.123408.Suche in Google Scholar PubMed

Tao, F., Ma, S., Tao, H., Jin, L., Luo, Y., Zheng, J., Xiang, W., and Deng, H. (2021). Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment – a review. Carbohydr. Polym. 251: 117063, https://doi.org/10.1016/j.carbpol.2020.117063.Suche in Google Scholar PubMed

Torrisi, L., Roszkowska, A.M., Silipigni, L., Cutroneo, M., and Torrisi, A. (2024). Effects of 365 nm UV lamp irradiation of polymethylmethacrylate (PMMA). Radiat. Eff. Defects Solids 179: 264–274, https://doi.org/10.1080/10420150.2024.2318768.Suche in Google Scholar

Trinh, K.T.L., Thai, D.A., Chae, W.R., and Lee, N.Y. (2020). Rapid fabrication of poly(methyl methacrylate) devices for lab-on-a-chip applications using acetic acid and UV treatment. ACS Omega 5: 17396–17404, https://doi.org/10.1021/acsomega.0c01770.Suche in Google Scholar PubMed PubMed Central

Vacalebre, M., Frison, R., Corsaro, C., Neri, F., Santoro, A., Conoci, S., Anastasi, E., Curatolo, M.C., and Fazio, E. (2023). Current state of the art and next generation of materials for a customized intraocular lens according to a patient-specific eye power. Polymers 15: 1590, https://doi.org/10.3390/polym15061590.Suche in Google Scholar PubMed PubMed Central

von Hertzberg-Boelch, S.P., Luedemann, M., Rudert, M., and Steinert, A.F. (2022). PMMA bone cement: antibiotic elution and mechanical properties in the context of clinical use. Biomedicines 10: 1830, https://doi.org/10.3390/biomedicines10081830.Suche in Google Scholar PubMed PubMed Central

Wang, B., Lin, Q., Shen, C., Tang, J., Han, Y., and Chen, H. (2014). Hydrophobic modification of polymethyl methacrylate as intraocular lenses material to improve the cytocompatibility. J. Colloid Interface Sci. 431: 1–7, https://doi.org/10.1016/j.jcis.2014.05.056.Suche in Google Scholar PubMed

Werner, J.S. and Spillmann, L. (1989). UV-absorbing intraocular lenses: safety, efficacy, and consequences for the cataract patient. Graefe’s Arch. Clin. Exp. Ophthalmol. 227: 248–256, https://doi.org/10.1007/BF02172758.Suche in Google Scholar PubMed

Werner, L.P., Legeais, J.M., Durand, J., Savoldelli, M., Legeay, G., and Renard, G. (1997). Endothelial damage caused by uncoated and fluorocarbon-coated poly(methyl methacrylate) intraocular lenses. J. Cataract Refractive Surg. 23: 1013–1019, https://doi.org/10.1016/s0886-3350(97)80073-9.Suche in Google Scholar PubMed

Zafar, M.S. (2020). Prosthodontic applications of polymethyl methacrylate (PMMA): an update. Polymers 12: 2299, https://doi.org/10.3390/polym12102299.Suche in Google Scholar PubMed PubMed Central

Received: 2024-02-12
Accepted: 2024-05-22
Published Online: 2024-07-03
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2024-0029/pdf
Button zum nach oben scrollen