Startseite Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)

  • Sasi Kumar Mani EMAIL logo , Sathish Selvaraj , Gokulkumar Sivanantham , Felix Sahayaraj Arockiasamy , Jenish Iyyadurai und Makeshkumar Mani
Veröffentlicht/Copyright: 2. Juli 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Increasing environmental awareness and concerns about global warming have resulted in a significant demand for sustainable and eco-friendly resources, such as naturally available fibers, that can be suitable alternatives to petroleum/synthetic materials such as glass, carbon and Kevlar in reinforced composites. The exploration of natural fibers as reinforcements in composites is increasing in popularity, particularly in the development of transport and household components. However, natural fibers also have a few limitations that should be addressed appropriately, including lack of compatibility between fiber-matrix, fiber swelling, excess absorption of moisture, resistance to chemicals and fire. Consequently, various processes have been used to improve the fiber surface, to obtain a better fiber–matrix interface. The primary objective of this work is to review the impact that a 5 % NaOH (sodium hydroxide) treatment has on the chemical, mechanical, and thermal properties of natural fiber-reinforced composites (NFRC).


Corresponding author: Sasi Kumar Mani, Department of Aeronautical Engineering, KIT–Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu 641402, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: None declared.

  6. Data availability: Not applicable.

References

Acharya, S.K., Priya Mishra, P., and Mehar, S.K. (2008). The influence of fiber treatment on the performance of bagasse fiber-reinforced polymer composite. J. Reinf. Plast. Compos. 28: 3027–3036, https://doi.org/10.1177/0731684408094221.Suche in Google Scholar

Aji, I.S., Zainudin, E.S., Abdan, K., Sapuan, S.M., and Khairul, M.D. (2012). Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J. Compos. Mater. 47: 979–990, https://doi.org/10.1177/0021998312444147.Suche in Google Scholar

Akhtar, M.N., Sulong, A.B., Radzi, M.K.F., Ismail, N.F., Raza, M.R., Muhamad, N., and Khan, M.A. (2016). Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat. Sci.: Mater. Int. 26: 657–664, https://doi.org/10.1016/J.PNSC.2016.12.004.Suche in Google Scholar

Akil, H. and Zamri, M.H. (2014). Performance of natural fiber composites under dynamic loading. In: Natural fiber composites. Woodhead Publishing. Sawston, UK, pp. 323–344.10.1533/9780857099228.3.323Suche in Google Scholar

Alam, S.S., Munshi, M.R., Shufian, A., Haque, M.M., Haque, M.R., Hasan, M., Gafur, M.A., and Rahman, F. (2023). Influence of alkalisation and eggshell particles on mechanical, thermal and physical properties of rattan-bamboo fibre reinforced hybrid polyester laminated composite. Adv. Mater. Proc. Technol. 1–20, https://doi.org/10.1080/2374068X.2022.2157079.Suche in Google Scholar

Alao, P.F., Marrot, L., Burnard, M.D., Lavrič, G., Saarna, M., and Kers, J. (2021). Impact of alkali and silane treatment on hemp/PLA composites’ performance: from micro to macro scale. Polymers 13: 851, https://doi.org/10.3390/POLYM13060851.Suche in Google Scholar

Alawar, A., Hamed, A.M., and Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites, Part B 40: 601–606, https://doi.org/10.1016/J.COMPOSITESB.2009.04.018.Suche in Google Scholar

Ali, S.S.S., Razman, M.R., Awang, A., Asyraf, M.R.M., Ishak, M.R., Ilyas, R.A., and Lawrence, R.J. (2021). Critical determinants of household electricity consumption in a rapidly growing city. Sustainability 13: 4441, https://doi.org/10.3390/SU13084441.Suche in Google Scholar

Alias, A.H., Norizan, M.N., Sabaruddin, F.A., Asyraf, M.R.M., Norrrahim, M.N.F., Ilyas, A.R., Kuzmin, A.M., Rayung, M., Shazleen, S.S., Nazrin, A., et al.. (2021). Hybridization of MMT/lignocellulosic fiber reinforced polymer nanocomposites for structural applications: a review. Coatings 11: 1355, https://doi.org/10.3390/COATINGS11111355.Suche in Google Scholar

Al-Sulaiman, F.A. (2002). Mechanical properties of date palm fiber reinforced composites. Appl. Compos. Mater. 9: 369–377, https://doi.org/10.1023/A:1020216906846/METRICS.10.1023/A:1020216906846Suche in Google Scholar

Amico, S.C., Angrizani, C.C., and Drummond, M.L. (2008). Influence of the stacking sequence on the mechanical properties of glass/sisal hybrid composites. J. Reinf. Plast. Compos. 29: 179–189, https://doi.org/10.1177/0731684408096430.Suche in Google Scholar

Annie Paul, S., Boudenne, A., Ibos, L., Candau, Y., Joseph, K., and Thomas, S. (2008). Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Composites, Part A 39: 1582–1588, https://doi.org/10.1016/J.COMPOSITESA.2008.06.004.Suche in Google Scholar

Aravindh, M., Sathish, S., Ranga Raj, R., Karthick, A., Mohanavel, V., Patil, P.P., Muhibbullah, M., and Osman, S.M. (2022). A review on the effect of various chemical treatments on the mechanical properties of renewable fiber-reinforced composites. Adv. Mater. Sci. Eng. 2022: 2009691, https://doi.org/10.1155/2022/2009691.Suche in Google Scholar

Arthanarieswaran, V.P., Kumaravel, A., Kathirselvam, M., and Saravanakumar, S.S. (2016). Mechanical and thermal properties of Acacia leucophloea fiber/epoxy composites: influence of fiber loading and alkali treatment. Int. J. Polym. Anal. Charact. 21: 571–583, https://doi.org/10.1080/1023666X.2016.1183279.Suche in Google Scholar

Arthanarieswaran, V.P., Kumaravel, A., and Saravanakumar, S.S. (2015). Characterization of new natural cellulosic fiber from Acacia leucophloea bark. Int. J. Polym. Anal. Charact. 20: 367–376, https://doi.org/10.1080/1023666X.2015.1018737.Suche in Google Scholar

Aruan Efendy, M.G. and Pickering, K.L. (2014). Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites, Part A 67: 259–267, https://doi.org/10.1016/J.COMPOSITESA.2014.08.023.Suche in Google Scholar

Ashok, R.B., Srinivasa, C.V., and Basavaraju, B. (2018). A review on the mechanical properties of areca fiber reinforced composites. Sci. Technol. Mater. 30: 120–130, https://doi.org/10.1016/J.STMAT.2018.05.004.Suche in Google Scholar

Asim, M., Jawaid, M., Abdan, K., and Ishak, M.R. (2016). Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J. Bionic Eng. 13: 426–435, https://doi.org/10.1016/S1672-6529(16)60315-3.Suche in Google Scholar

Asyraf, M.R.M., Ishak, M.R., Norrrahim, M.N.F., Nurazzi, N.M., Shazleen, S.S., Ilyas, R.A., Rafidah, M., and Razman, M.R. (2021). Recent advances of thermal properties of sugar palm lignocellulosic fibre reinforced polymer composites. Int. J. Biol. Macromol. 193: 1587–1599, https://doi.org/10.1016/J.IJBIOMAC.2021.10.221.Suche in Google Scholar PubMed

Asyraf, M.R.M., Ishak, M.R., Syamsir, A., Nurazzi, N.M., Sabaruddin, F.A., Shazleen, S.S., Norrrahim, M.N.F., Rafidah, M., Ilyas, R.A., Rashid, M.Z.A., et al.. (2022). Mechanical properties of oil palm fibre-reinforced polymer composites: a review. J. Mater. Res. Technol. 17: 33–65, https://doi.org/10.1016/J.JMRT.2021.12.122.Suche in Google Scholar

Asyraf, M.R.M., Rafidah, M., Azrina, A., and Razman, M.R. (2021). Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose 28: 2675–2695, https://doi.org/10.1007/S10570-021-03710-3/METRICS.Suche in Google Scholar

Atiqah, A., Jawaid, M., Ishak, M.R., and Sapuan, S.M. (2018). Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. J. Nat. Fibers 15: 251–261, https://doi.org/10.1080/15440478.2017.1325427.Suche in Google Scholar

Awad, S.A., Fouad, H., Khalaf, E.M., Saba, N., Dhakal, H.N., Jawaid, M., and Alothman, O.Y. (2022). Performance evaluation of calcium alkali-treated oil palm/pineapple fibre/bio-phenolic composites. J. Bionic Eng. 19: 1493–1503, https://doi.org/10.1007/S42235-022-00198-W/METRICS.Suche in Google Scholar

Awad, S.A., Jawaid, M., Fouad, H., Saba, N., Dhakal, H.N., Alothman, O.Y., and Khalaf, E.M. (2022). A comparative assessment of chemical, mechanical, and thermal characteristics of treated oil palm/pineapple fiber/bio phenolic composites. Polym. Compos. 43: 2115–2128, https://doi.org/10.1002/PC.26525.Suche in Google Scholar

Ayoola, T.G., Olufemi, O.A., and Adesola, O.K. (2022). Mechanical characteristics of biomaterial particles reinforced epoxy resin composites for automobile accessories. Ann. Sci. Technol. 7: 9–16, https://doi.org/10.2478/AST-2022-0002.Suche in Google Scholar

Bachtiar, D., Sapuan, S.M., and Hamdan, M.M. (2008). The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater. Des. 29: 1285–1290, https://doi.org/10.1016/J.MATDES.2007.09.006.Suche in Google Scholar

Bakri, M.K.B., Jayamani, E., Heng, S.K., and Hamdan, S. (2015) Reinforced oil palm fiber epoxy composites: an investigation on chemical treatment of fibers on acoustical, morphological, mechanical and spectral properties. Mater. Today: Proc. 2: 2747–2756, https://doi.org/10.1016/J.MATPR.2015.07.266.Suche in Google Scholar

Beckermann, G.W. and Pickering, K.L. (2008). Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos. – A: Appl. Sci. Manuf. 39: 979–988, https://doi.org/10.1016/J.COMPOSITESA.2008.03.010.Suche in Google Scholar

Behera, S., Gautam, R.K., and Mohan, S. (2022). The effect of eco-friendly chemical treatment on sisal fiber and its epoxy composites: thermal, mechanical, tribological and morphological properties. Cellulose 29: 9055–9072, https://doi.org/10.1007/S10570-022-04826-W/FIGURES/12.Suche in Google Scholar

Bessadok, A., Marais, S., Gouanvé, F., Colasse, L., Zimmerlin, I., Roudesli, S., and Métayer, M. (2007). Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Compos. Sci. Technol. 67: 685–697, https://doi.org/10.1016/J.COMPSCITECH.2006.04.013.Suche in Google Scholar

Bharath, K.N., Madhu, P., Gowda, T.G.Y., Sanjay, M.R., Kushvaha, V., and Siengchin, S. (2020). Alkaline effect on characterization of discarded waste of Moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J. Polym. Environ. 28: 2823–2836, https://doi.org/10.1007/S10924-020-01818-4/FIGURES/16.Suche in Google Scholar

Bharath, K.N., Puttegowda, M., Mavinkere Rangappa, S., Basavarajappa, S., Siengchin, S., Khan, A., and Gorbatyuk, S.M. (2023). Study of treatment effect on the Cocos nucifera lignocellulosic fibers as alternative for polymer composites. J. Nat. Fibers 20, https://doi.org/10.1080/15440478.2022.2134257.Suche in Google Scholar

Bhatnagar, A. and Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24: 1259–1268, https://doi.org/10.1177/0731684405049864.Suche in Google Scholar

Boopalan, M., Niranjanaa, M., and Umapathy, M.J. (2013). Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites, Part B 51: 54–57, https://doi.org/10.1016/J.COMPOSITESB.2013.02.033.Suche in Google Scholar

Boopathi, L., Sampath, P.S., and Mylsamy, K. (2012). Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites, Part B 43: 3044–3052, https://doi.org/10.1016/J.COMPOSITESB.2012.05.002.Suche in Google Scholar

Brahmakumar, M., Pavithran, C., and Pillai, R.M. (2005). Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos. Sci. Technol. 65: 563–569, https://doi.org/10.1016/J.COMPSCITECH.2004.09.020.Suche in Google Scholar

Brígida, A.I.S., Calado, V.M.A., Gonçalves, L.R.B., and Coelho, M.A.Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 79: 832–838, https://doi.org/10.1016/J.CARBPOL.2009.10.005.Suche in Google Scholar

Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T., Waterhouse, G.I.N., and Li, Y. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crops Prod. 65: 27–35, https://doi.org/10.1016/J.INDCROP.2014.11.048.Suche in Google Scholar

Cao, Y., Shibata, S., and Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos. – A: Appl. Sci. Manuf. 37: 423–429, https://doi.org/10.1016/J.COMPOSITESA.2005.05.045.Suche in Google Scholar

Cavalcanti, D.K.K., Banea, M.D., Neto, J.S.S., Lima, R.A.A., da Silva, L.F.M., and Carbas, R.J.C. (2019). Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Composites, Part B 175: 107149, https://doi.org/10.1016/J.COMPOSITESB.2019.107149.Suche in Google Scholar

Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z., and Jawaid, M. (2017). A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast., Rubber Compos. 46: 119–136, https://doi.org/10.1080/14658011.2017.1298550/ASSET/IMAGES/MEDIUM/10.1080_14658011.2017.1298550-EQ4.GIF.Suche in Google Scholar

Chen, C.H., Chen, C.Y., Lo, Y.W., Mao, C.F., and Liao, W.T. (2001). Characterization of alkali-treated jute fibers for physical and mechanical properties. J. Appl. Polym. Sci. 80: 1013–1020, https://doi.org/10.1002/APP.1184.Suche in Google Scholar

Chithambara Thanu, M., Appadurai, M., Fantin Irudaya Raj, E., and Lurthu Pushparaj, T. (2023). Experimental analysis of localized hybridization by means of adding woven polyester strip. Int. Polym. Process. 38: 505–517, https://doi.org/10.1515/IPP-2023-4339/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Cionita, T., Siregar, J.P., Shing, W.L., Hee, C.W., Fitriyana, D.F., Jaafar, J., Junid, R., Irawan, A.P., and Hadi, A.E. (2022). The influence of filler loading and alkaline treatment on the mechanical properties of palm kernel cake filler reinforced epoxy composites. Polymers 14: 3063, https://doi.org/10.3390/polym14153063.Suche in Google Scholar PubMed PubMed Central

Cyras, V.P., Vallo, C., Kenny, J.M., and Vázquez, A. (2004). Effect of chemical treatment on the mechanical properties of starch-based blends reinforced with sisal fibre. J. Compos. Mater. 38: 1387–1399, https://doi.org/10.1177/0021998304042738.Suche in Google Scholar

Dattatreya, K., Sathees Kumar, S., Prasad, V.V.S.H., and Pati, R. (n.d). Mechanical properties of waste natural fibers/fillers reinforced epoxy hybrid composites for automotive applications, Mater. Today Proc., https://doi.org/10.1016/j.matpr.2023.02.001.Suche in Google Scholar

de Campos, A., Tonoli, G.H.D., Marconcini, J.M., Mattoso, L.H.C., Klamczynski, A., Gregorski, K.S., Wood, D., Williams, T., Chiou, B.S., and Imam, S.H. (2013). TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J. Polym. Environ. 21: 1–7, https://doi.org/10.1007/S10924-012-0512-8/FIGURES/7.Suche in Google Scholar

Devnani, G.L. and Sinha, S. (2019). Epoxy-based composites reinforced with African teff straw (Eragrostis tef) for lightweight applications. Polym. Polym. Compos. 27: 189–200, https://doi.org/10.1177/0967391118822269/ASSET/IMAGES/LARGE/10.1177_0967391118822269-FIG12.JPEG.Suche in Google Scholar

Dhanalakshmi, S. and Bennehalli, B. (2012). Effect of chemical treatment on water absorption of areca fiber. J. Appl. Sci. Res. 8: 5298–5305.Suche in Google Scholar

Dittenber, D.B. and Gangarao, H.V.S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Compos. – A: Appl. Sci. Manuf. 43: 1419–1429, https://doi.org/10.1016/J.COMPOSITESA.2011.11.019.Suche in Google Scholar

Edeerozey, A.M.M., Akil, H.M., Azhar, A.B., and Ariffin, M.I.Z. (2007). Chemical modification of kenaf fibers. Mater. Lett. 61: 2023–2025, https://doi.org/10.1016/J.MATLET.2006.08.006.Suche in Google Scholar

Elkhaoulani, A., Arrakhiz, F.Z., Benmoussa, K., Bouhfid, R., and Qaiss, A. (2013). Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene. Mater. Des. 49: 203–208, https://doi.org/10.1016/J.MATDES.2013.01.063.Suche in Google Scholar

Fernandes, R.A.P., Silveira, P.H.P.M.da, Bastos, B.C., Pereira, P.S.D.C., Melo, V.A.de, Monteiro, S.N., Tapanes, N.de L.C.O., & Bastos, D.C. (2022). Bio-based composites for light automotive parts: statistical analysis of mechanical properties; effect of matrix and alkali treatment in sisal fibers. Polymers 14: 3566. https://doi.org/10.3390/POLYM14173566.Suche in Google Scholar

Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., and Valenza, A. (2016). A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites, Part B 85: 150–160, https://doi.org/10.1016/J.COMPOSITESB.2015.09.028.Suche in Google Scholar

Fiore, V., Scalici, T., Vitale, G., and Valenza, A. (2014). Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater. Des. 57: 456–464, https://doi.org/10.1016/J.MATDES.2014.01.025.Suche in Google Scholar

Fung, K.L., Xing, X.S., Li, R.K.Y., Tjong, S.C., and Mai, Y.W. (2003). An investigation on the processing of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 63: 1255–1258, https://doi.org/10.1016/S0266-3538(03)00095-2.Suche in Google Scholar

Gañan, P., Garbizu, S., Llano-Ponte, R., and Mondragon, I. (2005). Surface modification of sisal fibers: effects on the mechanical and thermal properties of their epoxy composites. Polym. Compos. 26: 121–127, https://doi.org/10.1002/PC.20083.Suche in Google Scholar

Gañán, P. and Mondragon, I. (2005). Effect of fiber treatments on mechanical behavior of short fique fiber-reinforced polyacetal. Composites 39: 633–646, https://doi.org/10.1177/0021998305047268.Suche in Google Scholar

Gassan, J. and Bledzki, A.K. (1999). Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 59: 1303–1309, https://doi.org/10.1016/S0266-3538(98)00169-9.Suche in Google Scholar

Geethamma, V.G., Joseph, R., and Thomas, S. (1995). Short coir fiber-reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci. 55: 583–594, https://doi.org/10.1002/APP.1995.070550405.Suche in Google Scholar

George, J., Bhagawan, S.S., and Thomas, S. (1997). Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites. Compos. Interfaces 5: 201–223, https://doi.org/10.1163/156855498X00153.Suche in Google Scholar

Gokulkumar, S., Thyla, P.R., Prabhu, L., and Sathish, S. (2020). Measuring methods of acoustic properties and influence of physical parameters on natural fibers: a review. J. Nat. Fibers 17: 1719–1738, https://doi.org/10.1080/15440478.2019.1598913.Suche in Google Scholar

Gokulkumar, S., Thyla, P.R., Prabhu, L., and Sathish, S. (2021). Characterization and comparative analysis on mechanical and acoustical properties of camellia sinensis/ananas comosus/glass fiber hybrid polymer composites. J. Nat. Fibers 18: 978–994, https://doi.org/10.1080/15440478.2019.1675215.Suche in Google Scholar

Gokulkumar, S., Thyla, P.R., Prabhu, L., Sathish, S., and Karthi, N. (2019) A comparative study on epoxy based composites filled with pineapple/areca/ramie hybridized with industrial tea leaf wastes/GFRP. Mater. Today: Proc. 27: 2474–2476, https://doi.org/10.1016/j.matpr.2019.09.221.Suche in Google Scholar

Gomes, A., Matsuo, T., Goda, K., and Ohgi, J. (2007). Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos. – A: Appl. Sci. Manuf. 38: 1811–1820, https://doi.org/10.1016/J.COMPOSITESA.2007.04.010.Suche in Google Scholar

Gonzalez-Murillo, C. and Ansell, M.P. (2009). Mechanical properties of henequen fibre/epoxy resin composites. Mech. Compos. Mater. 45: 435, https://doi.org/10.1007/S11029-009-9089-2.Suche in Google Scholar

Gu, H. (2009). Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater. Des. 30: 3931–3934, https://doi.org/10.1016/J.MATDES.2009.01.035.Suche in Google Scholar

Gupta, M.K. and Gond, R.K. (2017). Influence of concentrations of alkali treatment on mechanical and dynamic mechanical properties of hemp/polyester composite. Am. J. Polym. Sci. Eng. 5: 24–33.Suche in Google Scholar

Hanana, S., Elloumi, A., Placet, V., Tounsi, H., Belghith, H., and Bradai, C. (2015). An efficient enzymatic-based process for the extraction of high-mechanical properties alfa fibres. Ind. Crops Prod. 70: 190–200, https://doi.org/10.1016/J.INDCROP.2015.03.018.Suche in Google Scholar

Haneefa, A., Bindu, P., Aravind, I., and Thomas, S. (2008). Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J. Compos. Mater. 42: 1471–1489, https://doi.org/10.1177/0021998308092194.Suche in Google Scholar

Haque, M.M., Hasan, M., Islam, M.S., and Ali, M.E. (2009). Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 100: 4903–4906, https://doi.org/10.1016/J.BIORTECH.2009.04.072.Suche in Google Scholar

Herrera-Franco, P.J. and Valadez-González, A. (2005). A study of the mechanical properties of short natural-fiber reinforced composites. Composites, Part B 36: 597–608, https://doi.org/10.1016/J.COMPOSITESB.2005.04.001.Suche in Google Scholar

Hosur, M., Maroju, H., and Jeelani, S. (2015). Comparison of effects of alkali treatment on flax fibre reinforced polyester and polyester-biopolymer blend resins. Polym. Compos. 23: 229–242, https://doi.org/10.1177/096739111502300404.Suche in Google Scholar

Huda, M.S., Drzal, L.T., Mohanty, A.K., and Misra, M. (2008). Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos. Sci. Technol. 68: 424–432, https://doi.org/10.1016/J.COMPSCITECH.2007.06.022.Suche in Google Scholar

Ilyas, R.A., Sapuan, S.M., Asyraf, M.R.M., Dayana, D.A.Z.N., Amelia, J.J.N., Rani, M.S.A., Norrrahim, M.N.F., Nurazzi, N.M., Aisyah, H.A., Sharma, S., et al.. (2021). Polymer composites filled with metal derivatives: a review of flame retardants. Polymers 13: 1701. https://doi.org/10.3390/POLYM13111701.Suche in Google Scholar

Islam, A., Dwivedi, S.P., Dwivedi, V.K., Sharma, S., and Kozak4, D. (2021). Development of marble dust/waste pet based polymer composite material for environmental sustainability: fabrication and characterizations. Mater. Perform. Charact. 10: 538–552, https://doi.org/10.1520/MPC20210034.Suche in Google Scholar

Jagadeesh, P., Puttegowda, M., Mavinkere Rangappa, S., and Siengchin, S. (2021). Influence of nanofillers on biodegradable composites: a comprehensive review. Polym. Compos. 42: 5691–5711, https://doi.org/10.1002/PC.26291.Suche in Google Scholar

Jarukumjorn, K. and Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber–polypropylene composites. Composites, Part B 40: 623–627, https://doi.org/10.1016/J.COMPOSITESB.2009.04.007.Suche in Google Scholar

Jayaramudu, J., Guduri, B.R., and Varada Rajulu, A. (2010). Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydr. Polym. 79: 847–851, https://doi.org/10.1016/J.CARBPOL.2009.10.046.Suche in Google Scholar

Jayaramudu, J., Maity, A., Sadiku, E.R., Guduri, B.R., Varada Rajulu, A., Ramana, C.V.V., and Li, R. (2011). Structure and properties of new natural cellulose fabrics from Cordia dichotoma. Carbohydr. Polym. 86: 1623–1629, https://doi.org/10.1016/J.CARBPOL.2011.06.071.Suche in Google Scholar

Jena, H., Pandit, M. Ku., and Pradhan, A. Ku. (2012). Study the impact property of laminated bamboo-fibre composite filled with cenosphere. Int. J. Environ. Sci. Dev. 35: 456–459, https://doi.org/10.7763/ijesd.2012.v3.266.Suche in Google Scholar

John, K. and Naidu, S.V. (2004). Effect of fiber content and fiber treatment on flexural properties of sisal fiber/glass fiber hybrid composites. J. Reinf. Plast. Compos. 23: 1601–1605, https://doi.org/10.1177/0731684404039799.Suche in Google Scholar

John, M.J., Francis, B., Varughese, K.T., and Thomas, S. (2008). Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. – A: Appl. Sci. Manuf. 39: 352–363, https://doi.org/10.1016/J.COMPOSITESA.2007.10.002.Suche in Google Scholar

Joseph, K., Thomas, S., and Pavithran, C. (1996). Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37: 5139–5149, https://doi.org/10.1016/0032-3861(96)00144-9.Suche in Google Scholar

Kakou, C.A., Raji, M., Abdellaoui, H., Bouhfid, R., Qaiss, A., and Rodrigue, D. (2020). The effect of physical aging on the mechanical properties of raw, treated and compatibilized coir fibers-based polyisoprene bio-composites. Int. Polym. Process. 35: 429–439, https://doi.org/10.1515/IPP-2020-350505/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Kalia, S., Kaith, B.S., and Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym. Eng. Sci. 49: 1253–1272, https://doi.org/10.1002/PEN.21328.Suche in Google Scholar

Karsli, N.G. and Aytac, A. (2014). Properties of alkali treated short flax fiber reinforced poly(lactic acid)/polycarbonate composites. Fibers Polym. 15: 2607–2612, https://doi.org/10.1007/S12221-014-2607-4/METRICS.Suche in Google Scholar

Karthi, N., Kumaresan, K., Rajeshkumar, G., Gokulkumar, S., and Sathish, S. (2022). Tribological and thermo-mechanical performance of chemically modified Musa Acuminata/Corchorus Capsularis reinforced hybrid composites. J. Nat. Fibers 19: 4640–4653, https://doi.org/10.1080/15440478.2020.1870614.Suche in Google Scholar

Karthi, N., Kumaresan, K., Sathish, S., Gokulkumar, S., Prabhu, L., and Vigneshkumar, N. (2019) An overview: natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater. Today: Proc. 27: 2828–2834, https://doi.org/10.1016/j.matpr.2020.01.011.Suche in Google Scholar

Karthi, N., Kumaresan, K., Sathish, S., Prabhu, L., Gokulkumar, S., Balaji, D., Vigneshkumar, N., Rohinth, S., Rafiq, S., Muniyaraj, S., et al.. (2021) Effect of weight fraction on the mechanical properties of flax and jute fibers reinforced epoxy hybrid composites. Mater. Today: Proc. 45: 8006–8010, https://doi.org/10.1016/J.MATPR.2020.12.1060.Suche in Google Scholar

Kathiresan, M. and Sivaraj, P. (2016). Preparation and characterization of biodegradable sugarcane bagasse nano reinforcement for polymer composites using ball milling operation. Int. J. Polym. Anal. Charact. 21: 428–435, https://doi.org/10.1080/1023666X.2016.1168061.Suche in Google Scholar

Kim, H., Okubo, K., Fujii, T., and Takemura, K. (2013). Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. J. Adhes. Sci. Technol. 27: 1348–1358, https://doi.org/10.1080/01694243.2012.697363.Suche in Google Scholar

Koyuncu, M., Karahan, M., Karahan, N., Shaker, K., and Nawab, Y. (2016). Static and dynamic mechanical properties of cotton/epoxy green composites. Fibres Text. East. Eur. 24: 105–111, https://doi.org/10.5604/12303666.1201139.Suche in Google Scholar

Kumaresan, M., Sathish, S., and Karthi, N. (2015). Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites. J. Appl. Eng. Sci. 18: 289–294, https://doi.org/10.6180/JASE.2015.18.3.09.Suche in Google Scholar

Kushwaha, P.K. and Kumar, R. (2010). Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. Polymers 30: 73–85, https://doi.org/10.1177/0731684410383064.Suche in Google Scholar

La Mantia, F.P. and Morreale, M. (2011). Green composites: a brief review. Compos. – A: Appl. Sci. Manuf. 42: 579–588, https://doi.org/10.1016/J.COMPOSITESA.2011.01.017.Suche in Google Scholar

Lai, W.L., Mariatti, M., and Mohamad, J.S. (2008). The properties of woven kenaf and betel palm (areca catechu) reinforced unsaturated polyester composites. Polym. – Plast. Technol. Eng. 47: 1193–1199, https://doi.org/10.1080/03602550802392035.Suche in Google Scholar

Lamhour, K., Rouway, M., Mrajji, O., Tizliouine, A., Omari, L.E.H., Salhi, H., Chakhchaoui, N., Cherkaoui, O., and El Wazna, M. (2022). Extraction and characterization of Alfa fibers and their use to produce Alfa/wool woven fabrics for composite reinforcement. Int. Polym. Process. 37: 210–225, https://doi.org/10.1515/IPP-2022-4199/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Li, Y., Mai, Y.W., and Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Compos. Sci. Technol. 60: 2037–2055, https://doi.org/10.1016/S0266-3538(00)00101-9.Suche in Google Scholar

Liu, W., Mohanty, A.K., Drzal, L.T., Askel, P., and Misra, M. (2004). Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J. Mater. Sci. 39: 1051–1054, https://doi.org/10.1023/b:jmsc.0000012942.83614.75.10.1023/B:JMSC.0000012942.83614.75Suche in Google Scholar

Lourençon, T.V., Santilli, B.V., Magalhães, W.L.E., and Muniz, G.I.B. (2020). Thermal stabilization of wood/polypropylene composites through addition of unmodified, low-cost kraft lignin. Waste Biomass Valorization 11: 1555–1563, https://doi.org/10.1007/S12649-018-0484-6/TABLES/6.Suche in Google Scholar

Lu, T., Jiang, M., Jiang, Z., Hui, D., Wang, Z., and Zhou, Z. (2013). Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites, Part B 51: 28–34, https://doi.org/10.1016/J.COMPOSITESB.2013.02.031.Suche in Google Scholar

Madhu, P., Sanjay, M.R., Senthamaraikannan, P., Pradeep, S., Siengchin, S., Jawaid, M., and Kathiresan, M. (2020). Effect of various chemical treatments of Prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological properties. J. Nat. Fibers 17: 833–844, https://doi.org/10.1080/15440478.2018.1534191.Suche in Google Scholar

Madival, A.S., Maddasani, S., Shetty, R., and Doreswamy, D. (2023). Influence of chemical treatments on the physical and mechanical properties of Furcraea foetida fiber for polymer reinforcement applications. J. Nat. Fibers 20, https://doi.org/10.1080/15440478.2022.2136816.Suche in Google Scholar

Magalhães de Oliveira, D., Cristina Coelho de Carvalho Benini, K., Maciel Monticeli, F., Arsyad, M., Soenoko, R., Arman, A., and Wahyuni, N. (2019) Influence of soaking time on tensile strength of coconut fiber. J. Phys.: Conf. Ser. 1402: 066003. https://doi.org/10.1088/1742-6596/1402/6/066003.Suche in Google Scholar

Mahakur, V.K., Bhowmik, S., Patowari, P.K., and Kumar, S. (2023). Effect of alkaline treatment on physical, mechanical, and thermal characteristics of jute filler reinforced epoxy composites. J. Vinyl Addit. Technol. 29: 330–342, https://doi.org/10.1002/VNL.21963.Suche in Google Scholar

Mahesh, V., Mahesh, V., and Ponnusami, S.A. (2022). Influence of alkali treatment on mechanical properties of short Cocos nucifera fiber reinforced epoxy based sustainable green composite. J. Nat. Fibers 19: 15291–15299, https://doi.org/10.1080/15440478.2022.2123077.Suche in Google Scholar

Maheswari, C.U., Reddy, K.O., Muzenda, E., Shukla, M., and Rajulu, A.V. (2013). Mechanical properties and chemical resistance of short tamarind fiber/unsaturated polyester composites: influence of fiber modification and fiber content. Int. J. Polym. Anal. Charact. 18: 520–533, https://doi.org/10.1080/1023666X.2013.816073.Suche in Google Scholar

Mahjoub, R., Yatim, J.M., Mohd Sam, A.R., and Hashemi, S.H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr. Build. Mater. 55: 103–113, https://doi.org/10.1016/J.CONBUILDMAT.2014.01.036.Suche in Google Scholar

Mani, V., Krishnaswamy, K., Arockiasamy, F.S., and Manickam, T.S. (2023). Mechanical and dielectric properties of Cissus quadrangularis fiber-reinforced epoxy/TiB2 hybrid composites. Int. Polym. Process. 38: 435–446, https://doi.org/10.1515/IPP-2022-4321/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Manickaraj, K., Ramamoorthi, R., Sathish, S., and Johnson Santhosh, A. (2023). A comparative study on the mechanical properties of African teff and snake grass fiber-reinforced hybrid composites: effect of bio castor seed shell/glass/SiC fillers. Int. Polym. Process. 38: 551–563, https://doi.org/10.1515/IPP-2023-4343/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Manimaran, P., Senthamaraikannan, P., Murugananthan, K., and Sanjay, M.R. (2018). Physicochemical properties of new cellulosic fibers from Azadirachta indica plant. J. Nat. Fibers 15: 29–38, https://doi.org/10.1080/15440478.2017.1302388.Suche in Google Scholar

Marichelvam, M.K., Manimaran, P., Verma, A., Sanjay, M.R., Siengchin, S., Kandakodeeswaran, K., and Geetha, M. (2021). A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: an experimental approach. Polym. Compos. 42: 512–521, https://doi.org/10.1002/PC.25843.Suche in Google Scholar

Meon, M.S., Othman, M.F., Husain, H., Remeli, M.F., and Syawal, M.S.M. (2012). Improving tensile properties of kenaf fibers treated with sodium hydroxide. Procedia Eng. 41: 1587–1592, https://doi.org/10.1016/J.PROENG.2012.07.354.Suche in Google Scholar

Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K., and Tripathy, S.S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos. Sci. Technol. 63: 1377–1385, https://doi.org/10.1016/S0266-3538(03)00084-8.Suche in Google Scholar

Mohana Krishnudu, D., Sreeramulu, D., and Reddy, P.V. (2020). Alkali treatment effect: mechanical, thermal, morphological, and spectroscopy studies on abutilon indicum fiber-reinforced composites. J. Nat. Fibers 17: 1775–1784, https://doi.org/10.1080/15440478.2019.1598917.Suche in Google Scholar

Mouhoubi, S., Bourahli, M.E.H., Osmani, H., and Abdeslam, S. (2017). Effect of alkali treatment on alfa fibers behavior. J. Nat. Fibers 14: 239–249, https://doi.org/10.1080/15440478.2016.1193088.Suche in Google Scholar

Mwaikambo, L.Y. and Ansell, M.P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84: 2222–2234, https://doi.org/10.1002/APP.10460.Suche in Google Scholar

Mwaikambo, L.Y., Tucker, N., and Clark, A.J. (2007). Mechanical properties of hemp-fibre-reinforced Euphorbia composites. Macromol. Mater. Eng. 292: 993–1000, https://doi.org/10.1002/MAME.200700092.Suche in Google Scholar

Mylsamy, K. and Rajendran, I. (2010). Investigation on physio-chemical and mechanical properties of raw and alkali-treated agave americana fiber. J. Reinf. Plast. Compos. 29: 2925–2935, https://doi.org/10.1177/0731684410362817.Suche in Google Scholar

Mylsamy, K. and Rajendran, I. (2011). Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 32: 4629–4640, https://doi.org/10.1016/J.MATDES.2011.04.029.Suche in Google Scholar

Nam, T.H., Ogihara, S., Tung, N.H., and Kobayashi, S. (2011). Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Composites, Part B 42: 1648–1656, https://doi.org/10.1016/J.COMPOSITESB.2011.04.001.Suche in Google Scholar

Narendar, R. and Priya Dasan, K. (2014). Chemical treatments of coir pith: morphology, chemical composition, thermal and water retention behavior. Composites, Part B 56: 770–779, https://doi.org/10.1016/J.COMPOSITESB.2013.09.028.Suche in Google Scholar

Natarajan, P., Mohanraj, M., Kumar, M., and Sathish, S. (2024). Experimental investigation on mechanical and tribological analysis of pineapple leaf (Ananas comosus) and sisal (Agave sisalana) fibers reinforced hybrid epoxy composites. Int. Polym. Process. 39: 134–142, https://doi.org/10.1515/IPP-2023-4433/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Natarajan, P., Rajasekaran, P., Mohanraj, M., and Devi, S. (2023). Mechanical and tribological properties of snake grass fibers reinforced epoxy composites: effect of Java plum seed filler weight fraction. Int. Polym. Process. 38: 582–592, https://doi.org/10.1515/IPP-2023-4376/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Nurazzi, N.M., Khalina, A., Sapuan, S.M., Ilyas, R.A., Rafiqah, S.A., and Hanafee, Z.M. (2020). Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. J. Mater. Res. Technol. 9: 1606–1618, https://doi.org/10.1016/J.JMRT.2019.11.086.Suche in Google Scholar

Orue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A., and Arbelaiz, A. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites, Part B 73: 132–138, https://doi.org/10.1016/J.COMPOSITESB.2014.12.022.Suche in Google Scholar

Orue, A., Jauregi, A., Unsuain, U., Labidi, J., Eceiza, A., and Arbelaiz, A. (2016). The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites. Compos. – A: Appl. Sci. Manuf. 84: 186–195, https://doi.org/10.1016/J.COMPOSITESA.2016.01.021.Suche in Google Scholar

Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., and El Bouari, A. (2017). The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): study of the interface of DPF–Polyurethane composite. S. Afr. J. Chem. Eng. 23: 116–123, https://doi.org/10.1016/J.SAJCE.2017.04.005.Suche in Google Scholar

Panyasart, K., Chaiyut, N., Amornsakchai, T., and Santawitee, O. (2014). Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy Procedia 56: 406–413, https://doi.org/10.1016/J.EGYPRO.2014.07.173.Suche in Google Scholar

Paul, S.A., Joseph, K., Mathew, G.D.G., Pothen, L.A., and Thomas, S. (2010). Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Compos. – A: Appl. Sci. Manuf. 41: 1380–1387, https://doi.org/10.1016/J.COMPOSITESA.2010.04.015.Suche in Google Scholar

Prabhu, L., Krishnaraj, V., Gokulkumar, S., Sathish, S., and Ramesh, M. (2019) Mechanical, chemical and acoustical behavior of sisal – tea waste – glass fiber reinforced epoxy based hybrid polymer composites. Mater. Today: Proc. 16: 653–660, https://doi.org/10.1016/J.MATPR.2019.05.142.Suche in Google Scholar

Prabhu, L., Krishnaraj, V., Gokulkumar, S., Sathish, S., Sanjay, M.R., and Siengchin, S. (2022). Mechanical, chemical and sound absorption properties of glass/kenaf/waste tea leaf fiber-reinforced hybrid epoxy composites. J. Ind. Text. 51: 1674–1700, https://doi.org/10.1177/1528083720957392/ASSET/IMAGES/LARGE/10.1177_1528083720957392-FIG20.JPEG.Suche in Google Scholar

Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., and Karthi, N. (2020) Study of mechanical and morphological properties of jute-tea leaf fiber reinforced hybrid composites: effect of glass fiber hybridization. Mater. Today: Proc. 27: 2372–2375, https://doi.org/10.1016/J.MATPR.2019.09.132.Suche in Google Scholar

Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Karthi, N., Rajeshkumar, L., Balaji, D., Vigneshkumar, N., and Elango, K.S. (2021) A review on natural fiber reinforced hybrid composites: chemical treatments, manufacturing methods and potential applications. Mater. Today: Proc. 45: 8080–8085, https://doi.org/10.1016/J.MATPR.2021.01.280.Suche in Google Scholar

Prabhu, L., Krishnaraj, V., Sathish, S., Gokulkumar, S., Sanjay, M.R., and Siengchin, S. (2020). Mechanical and acoustic properties of alkali-treated sansevieria ehrenbergii/camellia sinensis fiber–reinforced hybrid epoxy composites: incorporation of glass fiber hybridization. Appl. Compos. Mater. 27: 915–933, https://doi.org/10.1007/S10443-020-09840-4/FIGURES/13.Suche in Google Scholar

Prasad, S.V., Pavithran, C., and Rohatgi, P.K. (1983). Alkali treatment of coir fibres for coir-polyester composites. J. Mater. Sci. 18: 1443–1454, https://doi.org/10.1007/BF01111964/METRICS.Suche in Google Scholar

Pujari, S. (2013). Comparison of jute and banana fiber composites: a review. Int. J. Current Eng. Technol. 2: 121–126, https://doi.org/10.14741/ijcet/spl.2.2014.22.Suche in Google Scholar

Punyamurthy, R., Sampathkumar, D., Ranganagowda, R.P.G., Bennehalli, B., and Srinivasa, C.V. (2017). Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J. King Saud Univ. Eng. Sci. 29: 289–294, https://doi.org/10.1016/J.JKSUES.2015.10.004.Suche in Google Scholar

Rahman, M.M. and Khan, M.A. (2007). Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos. Sci. Technol. 67: 2369–2376, https://doi.org/10.1016/J.COMPSCITECH.2007.01.009.Suche in Google Scholar

Rajamanickam, S.K., Ponnusamy, N., Mohanraj, M., and Julias Arulraj, A. (2023). Experimental investigation on mechanical and tribological characteristics of snake grass/sisal fiber reinforced hybrid composites. Int. Polym. Process. 38: 331–342, https://doi.org/10.1515/IPP-2022-4301/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Rakesh, K.M., Srinidhi, R., Gokulkumar, S., Nithin, K.S., Madhavarao, S., Sathish, S., Karthick, A., Muhibbullah, M., and Osman, S.M. (2021). Experimental study on the sound absorption properties of finger millet straw, Darbha, and ripe bulrush fibers. Adv. Mater. Sci. Eng. 2021: 7382044, https://doi.org/10.1155/2021/7382044.Suche in Google Scholar

Ramu, S., Senthilkumar, N., and Deepanraj, B. (2023) Experimental investigation on alkali treated (NaOH) groundnut shell (Arachis hypogaea L.) and rick husk (Oryza sativa) particle epoxy hybrid composites. Mater. Today: Proc., https://doi.org/10.1016/J.MATPR.2023.03.171.Suche in Google Scholar

Rashid, B., Leman, Z., Jawaid, M., Ghazali, M.J., and Ishak, M.R. (2016). Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose 23: 2905–2916, https://doi.org/10.1007/S10570-016-1005-Z/FIGURES/7.Suche in Google Scholar

Ray, D., Sarkar, B.K., Das, S., and Rana, A.K. (2002). Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Compos. Sci. Technol. 62: 911–917, https://doi.org/10.1016/S0266-3538(02)00005-2.Suche in Google Scholar

Ray, D., Sarkar, B.K., Rana, A.K., and Bose, N.R. (2001). Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 24: 129–135, https://doi.org/10.1007/BF02710089/METRICS.Suche in Google Scholar

Razali, N., Sapuan, S.M., Jawaid, M., Ishak, M.R., and Lazim, Y. (2016). Mechanical and thermal properties of roselle fibre reinforced vinyl ester composites. BioResources 11: 9325–9339, https://doi.org/10.15376/BIORES.11.4.9325-9339.Suche in Google Scholar

Razera, I.A.T. and Frollini, E. (2004). Composites based on jute fibers and phenolic matrices: properties of fibers and composites. J. Appl. Polym. Sci. 91: 1077–1085, https://doi.org/10.1002/APP.13224.Suche in Google Scholar

Reddy, K.O., Reddy, K.R.N., Zhang, J., Zhang, J., and Varada Rajulu, A. (2013). Effect of alkali treatment on the properties of century fiber. J. Nat. Fibers 10: 282–296, https://doi.org/10.1080/15440478.2013.800812.Suche in Google Scholar

Reddy, K.O., Uma Maheswari, C., Muzenda, E., Shukla, M., and Rajulu, A.V. (2016). Extraction and characterization of cellulose from pretreated Ficus (Peepal tree) leaf fibers. J. Nat. Fibers 13: 54–64, https://doi.org/10.1080/15440478.2014.984055.Suche in Google Scholar

Ridzuan, M.J.M., Abdul Majid, M.S., Afendi, M., Aqmariah Kanafiah, S.N., Zahri, J.M., and Gibson, A.G. (2016). Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater. Des. 89: 839–847, https://doi.org/10.1016/J.MATDES.2015.10.052.Suche in Google Scholar

Rokbi, M., Osmani, H., Imad, A., and Benseddiq, N. (2011). Effect of chemical treatment on flexure properties of natural fiber-reinforced polyester composite. Procedia Eng. 10: 2092–2097, https://doi.org/10.1016/J.PROENG.2011.04.346.Suche in Google Scholar

Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C., and Zeng, H.M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 61: 1437–1447, https://doi.org/10.1016/S0266-3538(01)00046-X.Suche in Google Scholar

Roslan, Z.B., Ramli, Z., Razman, M.R., Asyraf, M.R.M., Ishak, M.R., Ilyas, R.A., & Nurazzi, N.M. (2021). Reflections on local community identity by evaluating heritage sustainability protection in Jugra, Selangor, Malaysia. Sustainability 13: 8705. https://doi.org/10.3390/SU13168705.Suche in Google Scholar

Rout, J., Misra, M., Tripathy, S.S., Nayak, S.K., and Mohanty, A.K. (2001). The influence of fibre treatment on the performance of coir-polyester composites. Compos. Sci. Technol. 61: 1303–1310, https://doi.org/10.1016/S0266-3538(01)00021-5.Suche in Google Scholar

Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D., and Adhikari, B. (2010). Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour. Technol. 101: 3182–3187, https://doi.org/10.1016/J.BIORTECH.2009.12.010.Suche in Google Scholar PubMed

Sahu, S.B.B.P.J., Sahu, S., Nayak, S., and Roul, M.K. (2022). Effect of various chemical treatments on physical, mechanical, thermal and morphological properties of calotropis gigantea bast fiber. J. Nat. Fibers 19: 14208–14221, https://doi.org/10.1080/15440478.2022.2117758.Suche in Google Scholar

Sahu, S., Nayak, S., Sahu, S.B.B.P.J., and Roul, M.K. (2023). Influence of various surface treatments on mechanical, thermal, morphological, and water absorption properties of rattan (Calamus beccarii) fiber. J. Nat. Fibers 20: 30–44, https://doi.org/10.1080/15440478.2022.2125924.Suche in Google Scholar

Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., and Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172: 566–581, https://doi.org/10.1016/j.jclepro.2017.10.101.Suche in Google Scholar

Sanjay, M.R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C.I., and Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydr. Polym. 207: 108–121, https://doi.org/10.1016/j.carbpol.2018.11.083.Suche in Google Scholar PubMed

Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., and Moorthy, I.G. (2014). Investigation of physico-chemical properties of alkali-treated Prosopis juliflora fibers. Int. J. Polym. Anal. Charact. 19: 309–317, https://doi.org/10.1080/1023666X.2014.902527.Suche in Google Scholar

Sasi Kumar, M., Sathish, S., Makeshkumar, M., and Gokulkumar, S. (2024). Experimental studies on water absorption and mechanical properties of Hibiscus sabdariffa (Roselle) and Urena lobata (Caesar weed) plant Fiber-Reinforced hybrid epoxy composites: effect of weight fraction of nano-graphene fillers. Int. Polym. Process. 39: 59–69, https://doi.org/10.1515/IPP-2023-4398/MACHINEREADABLECITATION/RIS.Suche in Google Scholar

Sathish, S., Ganapathy, T., and Bhoopathy, T. (2014). Experimental testing on hybrid composite materials. Appl. Mech. Mater. 592–594: 339–343, https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.592-594.339.Suche in Google Scholar

Sathish, S., Karthi, N., Prabhu, L., Gokulkumar, S., Balaji, D., Vigneshkumar, N., Ajeem Farhan, T.S., Akilkumar, A., and Dinesh, V.P. (2021) A review of natural fiber composites: extraction methods, chemical treatments and applications. Mater. Today: Proc. 45: 8017–8023, https://doi.org/10.1016/J.MATPR.2020.12.1105.Suche in Google Scholar

Sathish, S., Kumaresan, K., Prabhu, L., Gokulkumar, S., Dinesh, S., and Karthi, N. (2018). Experimental testing on mechanical properties of various natural fibers reinforced epoxy hybrid composites. Indian J. Sci. Technol. 11: 1–6, https://doi.org/10.17485/IJST/2018/V11I25/122231.Suche in Google Scholar

Sathish, S., Kumaresan, K., Prabhu, L., Gokulkumar, S., Karthi, N., and Vigneshkumar, N. (2020) Experimental investigation of mechanical and morphological properties of flax fiber reinforced epoxy composites incorporating SiC and Al2O3. Mater. Today: Proc. 27: 2249–2253, https://doi.org/10.1016/J.MATPR.2019.09.106.Suche in Google Scholar

Sathish, S., Kumaresan, K., Prabhu, L., and Vigneshkumar, N. (2017). Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites. Polym. Compos. 25: 229–236, https://doi.org/10.1177/096739111702500309.Suche in Google Scholar

Sathish, S., Prabhu, L., Gokulkumar, S., Karthi, N., Balaji, D., and Vigneshkumar, N. (2021a). Extraction, treatment and applications of natural fibers for bio-composites - a critical review. Int. Polym. Process. 36: 114–130, https://doi.org/10.1515/IPP-2020-4004/XML.Suche in Google Scholar

Sathish, S., Prabhu, L., Gokulkumar, S., Karthi, N., Balaji, D., and Vigneshkumar, N. (2021b). Extraction, treatment and applications of natural fibers for bio-composites - a critical review. Int. Polym. Process. 36: 114–130, https://doi.org/10.1515/IPP-2020-4004/XML.Suche in Google Scholar

Sathish, S., Prabhu, L., Gokulkumar, S., Karthi, N., Balaji, D., and Vigneshkumar, N. (2022). Extraction, treatment and applications of bio fiber composites A critical review. In: Composite and composite coatings: mechanical and tribology aspects, 1st ed. CRC Press, US, pp. 1–22.10.1201/9781003109723-1Suche in Google Scholar

Sathishkumar, T.P., Navaneethakrishnan, P., Shankar, S., Rajasekar, R., and Rajini, N. (2013). Characterization of natural fiber and composites – a review. J. Reinf. Plast. Compos. 32: 1457–1476, https://doi.org/10.1177/0731684413495322.Suche in Google Scholar

Sawpan, M.A., Pickering, K.L., and Fernyhough, A. (2011). Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Compos. – A: Appl. Sci. Manuf. 42: 310–319, https://doi.org/10.1016/J.COMPOSITESA.2010.12.004.Suche in Google Scholar

Senthamaraikannan, P. and Kathiresan, M. (2018). Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr. Polym. 186: 332–343, https://doi.org/10.1016/J.CARBPOL.2018.01.072.Suche in Google Scholar PubMed

Sepe, R., Bollino, F., Boccarusso, L., and Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites, Part B 133: 210–217, https://doi.org/10.1016/J.COMPOSITESB.2017.09.030.Suche in Google Scholar

Setswalo, K., Oladijo, O.P., Namoshe, M., Akinlabi, E.T., Sanjay, R.M., Siengchin, S., and Srisuk, R. (2023). The water absorption and thermal properties of green pterocarpus angolensis (Mukwa)-Polylactide composites. J. Nat. Fibers 20: 12–29, https://doi.org/10.1080/15440478.2022.2124217.Suche in Google Scholar

Setswalo, K., Oladijo, O.P., Namoshe, M., Siengchin, S., and Sanjay, M.R. (2023) Insights into the effects of alkaline treatment and soaking duration on the properties of pterocarpus angolensis (mukwa) wood fibers. Mater. Today: Proc. 77: 1132–1136, https://doi.org/10.1016/J.MATPR.2022.12.239.Suche in Google Scholar

Shanmugam, D. and Thiruchitrambalam, M. (2013). Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 50: 533–542, https://doi.org/10.1016/J.MATDES.2013.03.048.Suche in Google Scholar

Shanmugam, D., Thiruchitrambalam, M., and Thirumurugan, R. (2014). Continuous unidirectional palmyra palm leaf stalk fiber/glass—polyester composites: static and dynamic mechanical properties. J. Reinf. Plast. Compos. 33: 836–850, https://doi.org/10.1177/0731684413518828.Suche in Google Scholar

Shanmugasundaram, N. and Rajendran, I. (2016). Characterization of raw and alkali-treated mulberry fibers as potential reinforcement in polymer composites. J. Reinf. Plast. Compos. 35: 601–614, https://doi.org/10.1177/0731684415625822.Suche in Google Scholar

Sherwani, S.F.K., Salit, M.S.B., Zainudin, E.S.B, Leman, Z., and Khalina, A. (2022). Physical and flammability properties of treated sugar palm fibre reinforced polylactic acid composites. J. Ind. Text. 2022: 52, https://doi.org/10.1177/15280837221133574/ASSET/IMAGES/LARGE/10.1177_15280837221133574-FIG9.JPEG.Suche in Google Scholar

Singh, B., Gupta, M., and Verma, A. (1996). Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym. Compos. 17: 910–918, https://doi.org/10.1002/PC.10684.Suche in Google Scholar

Sinha, A.K., Narang, H.K., and Bhattacharya, S. (2018) Tensile strength of abaca epoxy laminated composites. Mater. Today: Proc. 5: 27861–27864, https://doi.org/10.1016/J.MATPR.2018.10.024.Suche in Google Scholar

Siregar, J.P., Sapuan, S.M., Rahman, M.Z.A., and Zaman, H.M.D.K. (2009). Physical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Adv. Compos. Lett. 18: 25–29, https://doi.org/10.1177/096369350901800104.Suche in Google Scholar

Song, X.H., Huang, C.M., Qin, H., Guan, W.F., and Ye, Y.S. (2022). Effects of alkali treatment on properties of willow bark fiber as potential fillers for polymer composites. J Eng Fibers Fabrics 2022: 17, https://doi.org/10.1177/15589250221138105/ASSET/IMAGES/LARGE/10.1177_15589250221138105-FIG7.JPEG.Suche in Google Scholar

Soni, P. and Sinha, S. (2022). Assessment of chemical treatment on hemp fiber utilized as reinforcement in polymer composites: association of thermal degradation and activation energy of fiber. J. Nat. Fibers 19: 15249–15260, https://doi.org/10.1080/15440478.2022.2121353.Suche in Google Scholar

Sreekala, M.S., Kumaran, M.G., Joseph, S., Jacob, M., and Thomas, S. (2000). Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance. Appl. Compos. Mater. 7: 295–329, https://doi.org/10.1023/A:1026534006291/METRICS.10.1023/A:1026534006291Suche in Google Scholar

Sreekumar, P.A., Thomas, S.P., Saiter, J.M., Joseph, K., Unnikrishnan, G., and Thomas, S. (2009). Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. – A: Appl. Sci. Manuf. 40: 1777–1784, https://doi.org/10.1016/J.COMPOSITESA.2009.08.013.Suche in Google Scholar

Sreenivas, H.T., Krishnamurthy, N., and Arpitha, G.R. (2020). A comprehensive review on light weight kenaf fiber for automobiles. Int. J. Lightweight Mater. Manuf. 3: 328–337, https://doi.org/10.1016/J.IJLMM.2020.05.003.Suche in Google Scholar

Sreenivasan, V.S., Rajini, N., Alavudeen, A., and Arumugaprabu, V. (2015). Dynamic mechanical and thermo-gravimetric analysis of Sansevieria cylindrica/polyester composite: effect of fiber length, fiber loading and chemical treatment. Composites, Part B 69: 76–86, https://doi.org/10.1016/J.COMPOSITESB.2014.09.025.Suche in Google Scholar

Sullins, T., Pillay, S., Komus, A., and Ning, H. (2017). Hemp fiber reinforced polypropylene composites: the effects of material treatments. Composites, Part B 114: 15–22, https://doi.org/10.1016/J.COMPOSITESB.2017.02.001.Suche in Google Scholar

Sumrith, N., Techawinyutham, L., Sanjay, M.R., Dangtungee, R., and Siengchin, S. (2020). Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable ecofriendly composites. J. Polym. Environ. 28: 2749–2760, https://doi.org/10.1007/S10924-020-01810-Y/TABLES/6.Suche in Google Scholar

Suryanto, H., Marsyahyo, E., Irawan, Y.S., and Soenoko, R. (2014). Morphology, structure, and mechanical properties of natural cellulose fiber from mendong grass (Fimbristylis globulosa). J. Nat. Fibers 11: 333–351, https://doi.org/10.1080/15440478.2013.879087.Suche in Google Scholar

Sydenstricker, T.H.D., Mochnaz, S., and Amico, S.C. (2003). Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polym. Test. 22: 375–380, https://doi.org/10.1016/S0142-9418(02)00116-2.Suche in Google Scholar

Teli, M. and Jadhav, A. (2017). Effect of mercerization on the properties of pandanus odorifer lignocellulosic fibre. IOSR J. Polymer. Text. Eng. 04: 07–15, https://doi.org/10.9790/019x-0401010715.Suche in Google Scholar

Tenazoa, C., Savastano, H., Charca, S., Quintana, M., and Flores, E. (2021). The effect of alkali treatment on chemical and physical properties of ichu and Cabuya fibers. J. Nat. Fibers 18: 923–936, https://doi.org/10.1080/15440478.2019.1675211.Suche in Google Scholar

Thiruchitrambalam, M., Alavudeen, A., Athijayamani, A., Venkateshwaran, N., and Perumal, A.E. (2009). Improving mechanical properties of banana/kenaf polyester hybrid composites using sodium laulryl sulfate treatment. Mater. Phys. Mech 8: 165–173.Suche in Google Scholar

Threepopnatkul, P., Kaerkitcha, N., and Athipongarporn, N. (2009). Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. Composites, Part B 40: 628–632, https://doi.org/10.1016/J.COMPOSITESB.2009.04.008.Suche in Google Scholar

Thyavihalli Girijappa, Y.G., Mavinkere Rangappa, S., Parameswaranpillai, J., and Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front. Mater. Sci. 6: 226, https://doi.org/10.3389/fmats.2019.00226.Suche in Google Scholar

Tufan, M., Akbaş, S., and Aslan, M. (2016). Decay resistance, thermal degradation, tensile and flexural properties of sisal carbon hybrid composites. Maderas: Cienc. Tecnol. 18: 599–606, https://doi.org/10.4067/S0718-221X2016005000052.Suche in Google Scholar

Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R., and Herrera-Franco, P.J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites, Part B 30: 309–320, https://doi.org/10.1016/S1359-8368(98)00054-7.Suche in Google Scholar

Venkateshwaran, N., Elaya Perumal, A., and Arunsundaranayagam, D. (2013). Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater. Des. 47: 151–159, https://doi.org/10.1016/J.MATDES.2012.12.001.Suche in Google Scholar

Vijay, R., Lenin Singaravelu, D., Vinod, A., Sanjay, M.R., Siengchin, S., Jawaid, M., Khan, A., and Parameswaranpillai, J. (2019). Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int. J. Biol. Macromol. 125: 99–108, https://doi.org/10.1016/J.IJBIOMAC.2018.12.056.Suche in Google Scholar

Vilay, V., Mariatti, M., Mat Taib, R., and Todo, M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos. Sci. Technol. 68: 631–638, https://doi.org/10.1016/J.COMPSCITECH.2007.10.005.Suche in Google Scholar

Wang, B., Panigrahi, S., Tabil, L., and Crerar, W. (2007). Pre-treatment of flax fibers for use in rotationally molded biocomposites. J. Reinf. Plast. Compos. 62: 447–463, https://doi.org/10.1177/0731684406072526.Suche in Google Scholar

Wirawan, R., Sapuan, S.M., Yunus, R., and Abdan, K. (2010). Properties of sugarcane bagasse/poly(vinyl chloride) composites after various treatments. J. Compos. Mater. 45: 1667–1674, https://doi.org/10.1177/0021998310385030.Suche in Google Scholar

Wong, K.J., Zahi, S., Low, K.O., and Lim, C.C. (2010). Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater. Des. 31: 4147–4154, https://doi.org/10.1016/J.MATDES.2010.04.029.Suche in Google Scholar

Xia, X., Liu, W., Zhou, L., Hua, Z., Liu, H., and He, S. (2016). Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iran. Polym. J. 25: 25–35, https://doi.org/10.1007/S13726-015-0395-3/FIGURES/7.Suche in Google Scholar

Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., and Zainudin, E.S. (2016). Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers Polym. 17: 275–281, https://doi.org/10.1007/S12221-016-5678-6/METRICS.Suche in Google Scholar

Yan, L., Chouw, N., and Jayaraman, K. (2014). Flax fibre and its composites – a review. Composites, Part B 56: 296–317, https://doi.org/10.1016/J.COMPOSITESB.2013.08.014.Suche in Google Scholar

Yousif, B.F., Shalwan, A., Chin, C.W., and Ming, K.C. (2012). Flexural properties of treated and untreated kenaf/epoxy composites. Mater. Des. 40: 378–385, https://doi.org/10.1016/J.MATDES.2012.04.017.Suche in Google Scholar

Yu, T., Ren, J., Li, S., Yuan, H., and Li, Y. (2010). Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos. – A: Appl. Sci. Manuf. 41: 499–505, https://doi.org/10.1016/J.COMPOSITESA.2009.12.006.Suche in Google Scholar

Zalinawati, M., Siregar, J.P., Tezara, C., Jaafar, J., Sazali, N., Oumer, A.N., and Hamdan, M.H.M. (2020). The effect of fibre treatment on water absorption and mechanical properties of buri palm (Corypha utan) fibre reinforced epoxy composites. J. Mech. Eng. Sci. 14: 7379–7388, https://doi.org/10.15282/JMES.14.4.2020.06.0580.Suche in Google Scholar

Zhang, K., Liang, W., Wang, F., and Wang, Z. (2021). Effect of water absorption on the mechanical properties of bamboo/glass-reinforced polybenzoxazine hybrid composite. Polym. Polym. Compos. 29: 3–14, https://doi.org/10.1177/0967391120903664/ASSET/IMAGES/LARGE/10.1177_0967391120903664-FIG9.JPEG.Suche in Google Scholar

Received: 2024-01-04
Accepted: 2024-06-10
Published Online: 2024-07-02
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2024-0002/html
Button zum nach oben scrollen