Abstract
Microstructural analysis is an important technique to study the extent of interaction between metal fillers and polymers. The aim of this study is to review the investigations on the microstructural properties of metal-reinforced polymer composites. Scanning Electron Microscope (SEM) operating at a magnification range of 2,500× is typically used for examining the microstructure of the composites. Microstructural analysis reveals two key qualitative informations, dispersion and interfacial adhesion. It was observed from the review that flaky metal fillers will maximise dispersion and interfacial adhesion hence leading to improved mechanical, tribological, electrical, and thermal properties of the composites. Utilizing ternary metallic components helps to eliminate aggregation because the cohesion of metal particles is limited. It is important that future microstructural studies evaluate nano-sized fillers as compared to micro-sized ones. Also, it is important to quantitatively correlate the arrangement of the fillers to macro-scale properties and finite element analysis is an important tool that can help achieving this.
-
Research ethics: Not applicable. This article does not contain any studies involving human or animal subjects.
-
Informed consent: Not applicable.
-
Author contributions: Joshua O. Ighalo conceptualized the study. Joshua O. Ighalo and Comfort Abidemi Adeyanju wrote the paper. Chinenye Adaobi Igwegbe and Adewale George Adeniyi supervised the study. All authors reviewed and validated the study.
-
Competing interests: The authors declare that there are no competing interests.
-
Research funding: None declared.
-
Data availability: This manuscript does not have an associated dataset.
References
Abdulkareem, S.A. and Adeniyi, A. (2019). Recycling copper and polystyrene from solid waste stream in developing conductive composites. J. Solid Waste Technol. Manage. 45: 39–44, https://doi.org/10.5276/jswtm.2019.39.Suche in Google Scholar
Abdulkareem, S., Amosa, M.K., and Adeniyi, A. (2018a). Synthesis and structural analysis of aluminium-filled polystyrene composites from recycled wastes. Environ. Res. Eng. Manage. 74: 58–66, https://doi.org/10.5755/j01.erem.74.2.19680.Suche in Google Scholar
Abdulkareem, S.A., Amosa, M.K., and Adeniyi, A. (2018b). Synthesis and structural analysis of aluminium-filled polystyrene composites from recycled wastes. Environ. Res. Eng. Manage. 74: 58–66, https://doi.org/10.5755/j01.erem.74.2.19680.Suche in Google Scholar
Abdulkareem, S.A., Amosa, M.K., Adeniyi, A.G., Magaji, M.M., and Ajibola, R.A. (2019). Effect of metallic fillers on the hardness of polystyrene composites: an experimental investigation. Mater. Sci. Eng. 640: 12058, https://doi.org/10.1088/1757-899X/640/1/012058.Suche in Google Scholar
Abshinova, M.A., Lopatin, A.V., Kazantseva, N.E., Vilčáková, J., and Sáha, P. (2007). Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composites. Composites, Part A 38: 2471–2485, https://doi.org/10.1016/j.compositesa.2007.08.002.Suche in Google Scholar
Addou, F., Duguet, T., Ledru, Y., Mesnier, D., and Vahlas, C. (2021). Engineering copper adhesion on poly-epoxy surfaces allows one-pot metallization of polymer composite telecommunication waveguides. Coatings 11: 50, https://doi.org/10.3390/coatings11010050.Suche in Google Scholar
Adeniyi, A.G. and Ighalo, J.O. (2021). A systematic review of pure metals reinforced plastic composites. Iran. Polym. J. 30: 751–768, https://doi.org/10.1007/s13726-021-00922-z.Suche in Google Scholar
Adeniyi, A.G., Ighalo, J.O., and Onifade, D.V. (2019a). Banana and plantain fiber reinforced polymer composites. J. Polym. Eng. 39: 597–611, https://doi.org/10.1515/polyeng-2019-0085.Suche in Google Scholar
Adeniyi, A.G., Onifade, D.V., Ighalo, J.O., and Adeoye, A.S. (2019b). A review of coir fiber reinforced polymer composites. Composites, Part B 176, 107305, https://doi.org/10.1016/j.compositesb.2019.107305.Suche in Google Scholar
Agrawal, A. and Satapathy, A. (2014). Effects of aluminium nitride inclusions on thermal and electrical properties of epoxy and polypropylene: an experimental investigation. Composites, Part A 63: 51–58, https://doi.org/10.1016/j.compositesa.2014.04.001.Suche in Google Scholar
Allahverdiyeva, K.V. (2021). Kinetic regularities of crystallization of copper-containing composites based on high density polyethylene and the graft copolymer. PPOR 22: 392–398.Suche in Google Scholar
Allakhverdieva, K.V. (2020). Physicomechanical properties of composit materials on basis of copper and polyolefins. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» 63: 71–77, https://doi.org/10.6060/ivkkt.20206310.6251.Suche in Google Scholar
Anuar, J., Mariatti, M., and Ismail, H. (2007). Properties of aluminium and zinc-filled natural rubber composites. Polym.-Plast. Technol. Eng. 46: 667–674, https://doi.org/10.1080/15583720701271484.Suche in Google Scholar
Azghan, M.A. and Eslami-Farsani, R. (2018). The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres. Mater. Res. Express 5: 025302, https://doi.org/10.1088/2053-1591/aaa92c.Suche in Google Scholar
Azman, N.N., Siddiqui, S., Hart, R., and Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Appl. Radiat. Isot. 71: 62–67, https://doi.org/10.1016/j.apradiso.2012.09.012.Suche in Google Scholar PubMed
Baker, C., Shah, S.I., and Hasanain, S.K. (2004). Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites. J. Magn. Magn. Mater. 280: 412–418, https://doi.org/10.1016/j.jmmm.2004.03.037.Suche in Google Scholar
Balea, A., Fuente, E., Blanco, A., and Negro, C. (2019). Nanocelluloses: natural-based materials for fiber-reinforced cement composites. A critical review. Polymers 11: 518, https://doi.org/10.3390/polym11030518.Suche in Google Scholar PubMed PubMed Central
Bello, S.A., Agunsoye, J.O., Adebisi, J.A., and Suleiman, B. (2017). Effects of aluminium particles on mechanical and morphological properties of epoxy nanocomposites. Acta Period. Technol. 48: 25–38, https://doi.org/10.2298/APT1748025B.Suche in Google Scholar
Bijanu, A., Arya, R., Agrawal, V., Tomar, A.S., Gowri, V.S., Sanghi, S.K., Mishra, D., and Salammal, S.T. (2021). Metal-polymer composites for radiation protection: a review. J. Polym. Res. 28: 392, https://doi.org/10.1007/s10965-021-02751-3.Suche in Google Scholar
Biswas, B., Chabri, S., Mitra, B.C., Bandyopadhyay, N.R., and Sinha, A. (2018). Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J. Inst. Eng. (India): Ser. C 99: 525–530, https://doi.org/10.1007/s40032-016-0329-7.Suche in Google Scholar
Bodunrin, M.O., Alaneme, K.K., and Chown, L.H. (2015). Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4: 434–445, https://doi.org/10.1016/j.jmrt.2015.05.003.Suche in Google Scholar
Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D., and Gauthier, C. (2007). A history of scanning electron microscopy developments: towards “wet-STEM” imaging. Micron 38: 390–401, https://doi.org/10.1016/j.micron.2006.06.008.Suche in Google Scholar PubMed
Butt, J. and Shirvani, H. (2018). Experimental analysis of metal/plastic composites made by a new hybrid method. Addit. Manuf. 22: 216–222, https://doi.org/10.1016/j.addma.2018.05.029.Suche in Google Scholar
Chandel, R., Sharma, N., and Bansal, S.A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Mater. 4: 1243–1257, https://doi.org/10.1007/s42247-021-00186-6.Suche in Google Scholar
Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., and Zhang, W. (2015). Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res., Sect. B 356: 88–93, https://doi.org/10.1016/j.nimb.2015.04.062.Suche in Google Scholar
Chi, Q., Ma, T., Dong, J., Cui, Y., Zhang, Y., Zhang, C., Xu, S., Wang, X., and Lei, Q. (2017). Enhanced thermal conductivity and dielectric properties of iron oxide/polyethylene nanocomposites induced by a magnetic field. Sci. Rep. 7: 3072, https://doi.org/10.1038/s41598-017-03273-z.Suche in Google Scholar PubMed PubMed Central
Esthappan, S.K., Nair, A.B., and Joseph, R. (2015). Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites. Composites, Part B 69: 145–153, https://doi.org/10.1016/j.compositesb.2013.08.010.Suche in Google Scholar
Gungor, A. (2006). The physical and mechanical properties of polymer composites filled with Fe‐powder. J. Appl. Polym. Sci. 99: 2438–2442, https://doi.org/10.1002/app.22637.Suche in Google Scholar
Hou, Y., Xu, Z., Chu, F., Gui, Z., Song, L., Hu, Y., and Hu, W. (2021). A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites. Composites, Part B 221: 109014, https://doi.org/10.1016/j.compositesb.2021.109014.Suche in Google Scholar
Huang, X., Jiang, P., and Tanaka, T. (2011). A review of dielectric polymer composites with high thermal conductivity. IEEE Conf. Electr. Insul. Magz. 27: 8–16, https://doi.org/10.1109/mei.2011.5954064.Suche in Google Scholar
Huang, Y., Kormakov, S., He, X., Gao, X., Zheng, X., Liu, Y., Sun, J., and Wu, D. (2019). Conductive polymer composites from renewable resources: an overview of preparation, properties, and applications. Polymers 11: 187, https://doi.org/10.3390/polym11020187.Suche in Google Scholar PubMed PubMed Central
Hwang, S., Reyes, E.I., Moon, K.-s., Rumpf, R.C., and Kim, N.S. (2015). Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electron. Mater. 44: 771–777, https://doi.org/10.1007/s11664-014-3425-6.Suche in Google Scholar
Ighalo, J.O. and Adeniyi, A.G. (2020a). A mini-review of the morphological properties of biosorbents derived from plant leaves. SN Appl. Sci. 2: 509, https://doi.org/10.1007/s42452-020-2335-x.Suche in Google Scholar
Ighalo, J.O. and Adeniyi, A.G. (2020b) Utilization of recycled polystyrene and aluminum wastes in the development of conductive plastic composites: evaluation of electrical properties. In: Hussain, C.M. (Ed.). Handbook of environmental materials management. Springer Nature, Switzerland, pp. 1–9.10.1007/978-3-319-58538-3_228-1Suche in Google Scholar
Ilyas, R.A., Sapuan, S.M., Asyraf, M.R.M., Dayana, D., Amelia, J.J.N., Rani, M.S.A., Norrrahim, M.N.F., Nurazzi, N.M., Aisyah, H.A., Sharma, S., et al.. (2021). Polymer composites filled with metal derivatives: a review of flame retardants. Polymers 13: 1701, https://doi.org/10.3390/polym13111701.Suche in Google Scholar PubMed PubMed Central
Irez, A., Bayraktar, E., and Miskioglu, I. (2018a). Mechanical characterization of epoxy–scrap rubber based composites reinforced with alumina fibers mechanics of composite and multi-functional materials, Vol. 6. Springer, Indianapolis, IN, pp. 59–70.10.1007/978-3-319-63408-1_6Suche in Google Scholar
Irez, A., Bayraktar, E., and Miskioglu, I. (2018b). Recycled and devulcanized rubber modified epoxy-based composites reinforced with nano-magnetic iron oxide, Fe3O4. Composites, Part B 148: 1–13, https://doi.org/10.1016/j.compositesb.2018.04.047.Suche in Google Scholar
Ismail, S.O., Akpan, E., and Dhakal, H.N. (2022). Review on natural plant fibres and their hybrid composites for structural applications: recent trends and future perspectives. Compos., Part C: Open Access 9: 100322.10.1016/j.jcomc.2022.100322Suche in Google Scholar
Jafar, H.I., Ali, N.A., and Shawky, A. (2011). Study of AC electrical properties of aluminum–epoxy composites. Mater. Sci. 4: 5.Suche in Google Scholar
Jassim, A.N., Alwan, R.M., Kadhim, Q.A., and Nsaif, A.A. (2016). Preparation and characterization of ZnO/polystyrene nanocomposite films using ultrasound irradiation. J Nano Sci Nanotechnol 6: 17–23, https://doi.org/10.5923/j.nn.20160602.01.Suche in Google Scholar
Kakhramanov, N.T., Allakhverdieva, K.V., Mustafayeva, F.A., and Abdullin, M.I. (2020). Influence of aluminum powder concentration on mechanism and kinetic regularities of crystallization of composites based on low density polyethylene. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» 63: 77–83, https://doi.org/10.6060/ivkkt.20206302.6045.Suche in Google Scholar
Kaloshkin, S., Tcherdyntsev, V., Gorshenkov, M., Gulbin, V., and Kuznetsov, S. (2012). Radiation-protective polymer-matrix nanostructured composites. J. Alloys Compd. 536: S522–S526, https://doi.org/10.1016/j.jallcom.2012.01.061.Suche in Google Scholar
Khushairi, M.T.M., Sharif, S., and Ani, J.S.M. (2015). Evaluation of mechanical properties of filled epoxy composite for improving mould performance–a review. Appl Mech Mater 735: 13–18, https://doi.org/10.4028/www.scientific.net/amm.735.13.Suche in Google Scholar
Kim, H., Jung, D.-H., Jung, I., Cifuentes, J., Rhee, K., and Hui, D. (2012). Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder. Composites, Part B 43: 1743–1748, https://doi.org/10.1016/j.compositesb.2011.12.010.Suche in Google Scholar
Kim, M., Kim, S., Kim, T., Lee, D., Seo, B., and Lim, C.-S. (2017). Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings 7: 231, https://doi.org/10.3390/coatings7120231.Suche in Google Scholar
Kinoshita, K., Minami, H., Tarutani, Y., Tajima, K., Okubo, M., and Yanagimoto, H. (2011). Preparations of polystyrene/aluminum hydroxide and polystyrene/alumina composite particles in an ionic liquid. Langmuir 27: 4474–4480, https://doi.org/10.1021/la200172j.Suche in Google Scholar PubMed
Klein, T., Buhr, E., and Frase, C.G. (2012). TSEM: a review of scanning electron microscopy in transmission mode and its applications advances in imaging and electron physics, 171. Elsevier, Amsterdam, Netherlands, pp. 297–356.10.1016/B978-0-12-394297-5.00006-4Suche in Google Scholar
Kobyliukh, A., Olszowska, K., Szeluga, U., and Pusz, S. (2020). Iron oxides/graphene hybrid structures–Preparation, modification, and application as fillers of polymer composites. Adv. Colloid Interface Sci. 285: 102285, https://doi.org/10.1016/j.cis.2020.102285.Suche in Google Scholar PubMed
Kumar, T.S., Shivashankar, G., Dhotey, K., and Singh, J. (2017). Experimental study wear rate of glass fibre reinforced epoxy polymer composites filled with aluminium powder. Mater. Today: Proc. 4: 10764–10768, https://doi.org/10.1016/j.matpr.2017.08.025.Suche in Google Scholar
Kurt, E., Yağız Özçelik, C., Yetgin, S., Ömürlü, F. Ö., and Balköse, D. (2013). Preparation and characterization of flexible PolyvinylchlorideCopper composite films. Polym. Polym. Compos. 21: 139–144, https://doi.org/10.1177/096739111302100303.Suche in Google Scholar
Li, J., Wang, A., Qin, J., Zhang, H., Ma, Z., and Zhang, G. (2021). Lightweight polymethacrylimide@ copper/nickel composite foams for electromagnetic shielding and monopole antennas. Composites, Part A 140: 106144, https://doi.org/10.1016/j.compositesa.2020.106144.Suche in Google Scholar
Maksimkin, A., Kaloshkin, S., Tcherdyntsev, V., Chukov, D., and Shchetinin, I. (2013). Effect of high‐energy ball milling on the structure and mechanical properties of ultra‐high molecular weight polyethylene. J. Appl. Polym. Sci. 130: 2971–2977, https://doi.org/10.1002/app.39457.Suche in Google Scholar
Mamunya, Y.P., Davydenko, V.V., Pissis, P., and Lebedev, E.V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 38: 1887–1897, https://doi.org/10.1016/S0014-3057(02)00064-2.Suche in Google Scholar
Misiura, A., Mamunya, Y.P., and Kulish, M. (2020). Metal-filled epoxy composites: mechanical properties and electrical/thermal conductivity. J. Macromol. Sci., Part B: Phys. 59: 121–136, https://doi.org/10.1080/00222348.2019.1695820.Suche in Google Scholar
Mohammed, A. and Abdullah, A. (2019). Scanning electron microscopy (SEM): a review. In: Paper presented at the proceedings of 2018 international conference on hydraulics and pneumatics–hervex.Suche in Google Scholar
Muhammad, A., Rahman, M.R., Baini, R., and Bakri, M.K.B. (2021). Applications of sustainable polymer composites in automobile and aerospace industry advances in sustainable polymer composites. Elsevier, Amsterdam, Netherlands, pp. 185–207.10.1016/B978-0-12-820338-5.00008-4Suche in Google Scholar
Ning, H., Janowski, G.M., Vaidya, U.K., and Husman, G. (2007). Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80: 82–91, https://doi.org/10.1016/j.compstruct.2006.04.090.Suche in Google Scholar
Olifirov, L., Kaloshkin, S., and Zhang, D. (2017). Study of thermal conductivity and stress-strain compression behavior of epoxy composites highly filled with Al and Al/f-MWCNT obtained by high-energy ball milling. Composites, Part A 101: 344–352, https://doi.org/10.1016/j.compositesa.2017.06.027.Suche in Google Scholar
Onifade, D.V., Ighalo, J.O., Adeniyi, A.G., and Hameed, K. (2020). Morphological and thermal properties of polystyrene composite reinforced with biochar from plantain stalk fibre. Mater. Int. 2: 150–156, https://doi.org/10.33263/Materials22.150156.Suche in Google Scholar
Osman, A.F. and Mariatti, M. (2006). Properties of aluminum filled polypropylene composites. Polym. Polym. Compos. 14: 623–633, https://doi.org/10.1177/09673911060140060.Suche in Google Scholar
Pargi, M.N.F., Teh, P.L., Hussiensyah, S., Yeoh, C.K., and Ghani, S.A. (2015). Recycled-copper-filled epoxy composites: the effect of mixed particle size. Int. J. Mech. Mater. Eng. 10: 1–10, https://doi.org/10.1186/s40712-015-0030-2.Suche in Google Scholar
Patel, M., Pardhi, B., Chopara, S., and Pal, M. (2018). Lightweight composite materials for automotive-a review. Carbon 1: 151.Suche in Google Scholar
Ravindren, R., Mondal, S., Nath, K., and Das, N.C. (2019). Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Composites, Part B 164: 559–569, https://doi.org/10.1016/j.compositesb.2019.01.066.Suche in Google Scholar
Salih, S.I., Nayyef, S., Alsalam, A.H.A., and Hasan, A.M. (2015). Evaluation mechanical properties of polymer composites reinforced by different metal powders. Eng. Biotechnol. J. 33: 1348–1360, https://doi.org/10.30684/etj.2015.116706.Suche in Google Scholar
Sarkar, P., Modak, N., and Sahoo, P. (2018). Mechanical and tribological characteristics of aluminium powder filled glass epoxy composites. Mater. Today: Proc. 5: 5496–5505, https://doi.org/10.1016/j.matpr.2017.12.139.Suche in Google Scholar
Senatov, F., Gorshenkov, M., Tcherdyntsev, V., Kaloshkin, S., and Sudarchikov, V. (2014). Fractographic analysis of composites based on ultra high molecular weight polyethylene. Composites, Part B 56: 869–875, https://doi.org/10.1016/j.compositesb.2013.08.083.Suche in Google Scholar
Senthilkumar, N., Kalaichelvan, K., and Elangovan, K. (2012). Mechanical Behaviour of aluminum particulate epoxy composite–experimental study and numerical simulation. Int. J. Mech. Mater. Eng. 7: 214–221.Suche in Google Scholar
Sharmila, T.B., Antony, J.V., Jayakrishnan, M., Beegum, P.S., and Thachil, E.T. (2016). Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater. Des. 90: 66–75, https://doi.org/10.1016/j.matdes.2015.10.055.Suche in Google Scholar
Singer, F., Deisenroth, D.C., Hymas, D.M., and Ohadi, M.M. (2017). Additively manufactured copper components and composite structures for thermal management applications. In: 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, pp. 174–183.10.1109/ITHERM.2017.7992469Suche in Google Scholar
Sj, A. and Natarajan, A. (2022). Review on the advancements and relevance of emerging joining techniques for aluminium to polymers/carbon fibre-reinforced polymer lightweight hybrid structures. Proc. Inst. Mech. Eng., Part L 236: 2394–2435, https://doi.org/10.1177/14644207221090331.Suche in Google Scholar
Sofian, N.M., Rusu, M., Neaguand, R., and Neagu, E. (2001). Metal powder-filled polyethylene composites. V. Thermal properties. J. Thermoplast. Compos. Mater. 14: 20–33, https://doi.org/10.1106/9N6K-VKH1-MHYX-FBC4.Suche in Google Scholar
Soo, V.K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M., and Duflou, J.R. (2018). Sustainable aluminium recycling of end-of-life products: a joining techniques perspective. J. Cleaner Prod. 178: 119–132, https://doi.org/10.1016/j.jclepro.2017.12.235.Suche in Google Scholar
Srivastava, V. and Verma, A. (2015). Mechanical behaviour of copper and aluminium particles reinforced epoxy resin composites. Am. J. Mater. Sci. 5: 84–89, https://doi.org/10.5923/j.materials.20150504.02.Suche in Google Scholar
Suryanarayana, C. (2017). Microstructure: an introduction aerospace Materials and material technologies. Springer, Heidelberg, Germany, pp. 105–123.10.1007/978-981-10-2143-5_6Suche in Google Scholar
Tamilarasan, U., Karunamoorthy, L., and Palanikumar, K. (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Mater. Res. 18: 1029–1037, https://doi.org/10.1590/1516-1439.017215.Suche in Google Scholar
Tekce, H.S., Kumlutas, D., and Tavman, I.H. (2007). Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 26: 113–121, https://doi.org/10.1177/0731684407072522.Suche in Google Scholar
Timbs, K., Khatamifar, M., Antunes, E., and Lin, W. (2021). Experimental study on the heat dissipation performance of straight and oblique fin heat sinks made of thermal conductive composite polymers. Therm. Sci. Eng. Prog. 22: 100848, https://doi.org/10.1016/j.tsep.2021.100848.Suche in Google Scholar
Trzepieciński, T., Najm, S.M., Sbayti, M., Belhadjsalah, H., Szpunar, M., and Lemu, H.G. (2021). New advances and future possibilities in forming technology of hybrid metal–polymer composites used in aerospace applications. J. Compos. Sci. 5: 217, https://doi.org/10.3390/jcs5080217.Suche in Google Scholar
Umoren, S.A. and Solomon, M.M. (2019). Protective polymeric films for industrial substrates: a critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites. Prog. Mater. Sci. 104: 380–450, https://doi.org/10.1016/j.pmatsci.2019.04.002.Suche in Google Scholar
Vaggar, G.B., Sirimani, V.B., Sataraddi, D.P., Hiremath, N.M., and Bhajantri, F. (2021). Effect of filler materials on thermal properties of polymer composite materials: a review. Int. J. Eng. Res. Technol. 10: 1–5.10.1088/1757-899X/1065/1/012030Suche in Google Scholar
Wilson, J.L., Poddar, P., Frey, N.A., Srikanth, H., Mohomed, K., Harmon, J.P., Kotha, S., and Wachsmuth, J. (2004). Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95: 1439–1443, https://doi.org/10.1063/1.1637705.Suche in Google Scholar
Yu, S., Lee, J.-W., Han, T.H., Park, C., Kwon, Y., Hong, S.M., and Koo, C.M. (2013). Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl. Mater. Interfaces 5: 11618–11622, https://doi.org/10.1021/am4030406.Suche in Google Scholar PubMed
Zhang, C., Chi, Q., Dong, J., Cui, Y., Wang, X., Liu, L., and Lei, Q. (2016). Enhanced dielectric properties of poly (vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles. Sci. Rep. 6: 33508, https://doi.org/10.1038/srep33508.Suche in Google Scholar PubMed PubMed Central
Zheng, Y., Chen, L., Wang, X., and Wu, G. (2020a). Modification of renewable cardanol onto carbon fiber for the improved interfacial properties of advanced polymer composites. Polymers 12: 45, https://doi.org/10.3390/polym12010045.Suche in Google Scholar PubMed PubMed Central
Zheng, Y., Wang, X., and Wu, G. (2020b). Chemical modification of carbon fiber with diethylenetriaminepentaacetic acid/halloysite nanotube as a multifunctional interfacial reinforcement for silicone resin composites. Polym. Adv. Technol. 31: 527–535, https://doi.org/10.1002/pat.4793.Suche in Google Scholar
Zhou, W., Apkarian, R., Wang, Z.L., and Joy, D. (2006). Fundamentals of scanning electron microscopy (SEM) Scanning microscopy for nanotechnology. Springer, Heidelberg, Germany, pp. 1–40.10.1007/978-0-387-39620-0_1Suche in Google Scholar
Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Mavinakuli, P., Karki, A.B., Young, D.P., and Guo, Z. (2010). Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J. Phy. Chem. C 114: 16335–16342, https://doi.org/10.1021/jp1062463.Suche in Google Scholar
Zihlif, A.M., Faduos, A.S., and Ragosta, G. (2013). Optoelectrical properties of polymer composite: polystyrene-containing iron particles. J. Thermoplast. Compos. Mater. 26: 1180–1191, https://doi.org/10.1177/0892705712437394.Suche in Google Scholar
Zou, B.-X., Liang, Y., Liu, X.-X., Diamond, D., and Lau, K.-T. (2011). Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources 196: 4842–4848, https://doi.org/10.1016/j.jpowsour.2011.01.073.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Probing the microstructural properties of metal-reinforced polymer composites
- Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)
- Research Articles
- The effect of clay reinforcement of pine pollen grains on the mechanical, anti-corrosion and anti-microbial properties of an epoxy coating
- Influence of stacking sequence and nano-silica fortification on the physical properties of veli karuvelam – peepal hybrid natural composites
- An experimental validation of diffusion-based devolatilization models in extruders using post-industrial and post-consumer plastic waste
- Impact of filler type and proportion on the performance of rubberized coconut fiber-polystyrene composites
- Evaluation of the processing conditions on the production of expanded or plasticized wood plastic composite with cashew nutshell powder
- Irradiation of PMMA intraocular lenses by a 365 nm UV lamp
- Design and simulation analysis of an extrusion structure based on screw extrusion 3D printing
Artikel in diesem Heft
- Frontmatter
- Review Articles
- Probing the microstructural properties of metal-reinforced polymer composites
- Advancements in chemical modifications using NaOH to explore the chemical, mechanical and thermal properties of natural fiber polymer composites (NFPC)
- Research Articles
- The effect of clay reinforcement of pine pollen grains on the mechanical, anti-corrosion and anti-microbial properties of an epoxy coating
- Influence of stacking sequence and nano-silica fortification on the physical properties of veli karuvelam – peepal hybrid natural composites
- An experimental validation of diffusion-based devolatilization models in extruders using post-industrial and post-consumer plastic waste
- Impact of filler type and proportion on the performance of rubberized coconut fiber-polystyrene composites
- Evaluation of the processing conditions on the production of expanded or plasticized wood plastic composite with cashew nutshell powder
- Irradiation of PMMA intraocular lenses by a 365 nm UV lamp
- Design and simulation analysis of an extrusion structure based on screw extrusion 3D printing