Startseite Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators

  • Y.-J. Chang , Q. Zhou , W.-H. Hou , Y.-H. Liang EMAIL logo , L. Ren , D.-H. Sun und L.-Q. Ren
Veröffentlicht/Copyright: 14. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Novel kinds of magnetism-driven poly N,N-dimethylacrylamide bilayer intelligent hydrogels with various nanofibrillated cellulose (NFC) contents were prepared successfully via one-step insitu free radical polymerization. The bilayer hydrogels possessed high mechanical strength, efficient swelling and steady magnetic response. With the increase of nanofibrillated cellulose content, the crosslinking density of the hydrogels increased, leading to the decrease of swelling rate and increase of mechanical strength and swelling bending degree of hydrogel actuators, respectively. Fe3O4 particles existed tightly on the micropore surfaces of the hydrogels, which built the function base of magnetic response of hydrogel actuators. The addition of Fe3O4 was irrelevant to the variation of crosslinking density. The bilayer structure exhibited high bonding strength. Based on intelligent responsive properties, bilayer hydrogels were designed as soft magnetism-driven actuators, realizing capture and transportation properties and provided material candidates for soft robots.


* Mail address: Yunhong Liang, State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, PRC


References

Bassik, N., Abebe, B. T., Laflin, K. E. and Gracias, D. H., “Photolitho-graphically Patterned Smart Hydrogel Based Bilayer Actuators", Polymer, 51, 6093 –6098 (2010), DOI:10.1016/j.polymer.2010.10.03510.1016/j.polymer.2010.10.035Suche in Google Scholar

Feng, Y. Y., Qin, M. M., Guo, H. Q., Yoshino, K. and Feng, W., “Infrared-Actuated Recovery of Polyurethane Filled by Reduced Graphene Oxide/Carbon Nanotube Hybrids with High Energy Density", Acs Appl. Mater. Inter., 5, 10882–10888 (2013), DOI:10.1021/am403071k10.1021/am403071kSuche in Google Scholar PubMed

Gao, Y., Wei, Z., Li, F., Yang, Z. M., Chen, Y. M., Zrinyi, M. and Osada, Y., “Synthesis of a Morphology Controllable Fe3O4 Nanoparticle/Hydrogel Magnetic Nanocomposite Inspired by Magnetotactic Bacteria and Its Application in H2O2 Detection", Green Chem., 16, 1255–1261 (2014), DOI:10.1039/C3GC41535J10.1039/C3GC41535JSuche in Google Scholar

Han, D., Farino, C., Yang, C., Scott, T., Browe, D., Choi, W., Freeman, J., W. and Lee, H., “Soft Robotic Manipulation and Locomotion with 3D Printed Electroactive Hydrogel", ACS Appl. Mater. Int., 10, 17512–17518 (2018), DOI:10.1021/acsami.°b0425010.1021/acsami.°b04250Suche in Google Scholar

Haraguchi, K., Takehisa, T. and Fan, S., “Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(Nisopropylacrylamide) and Clay", Macromolecules, 35, 10162 – 10171 (2002), DOI:10.1021/ma021301r10.1021/ma021301rSuche in Google Scholar

Hu, W. Q., Lum, G. Z., Mastrangeli, M. and Sitti, M., “Small-Scale Soft-Bodied Robot with Multimodal Locomotion", Nature, 554, 81–86 (2018), DOI:10.1038/nature2544310.1038/nature25443Suche in Google Scholar PubMed

Hua, R., Li, Z. K., “Sulfhydryl Functionalized Hydrogel with Magnetism: Synthesis, Characterization, and Adsorption Behavior Study for Heavy Metal Removal", Chem. Eng. J., 249, 189 –200 (2014), DOI:10.1016/j.cej.2014.03.09710.1016/j.cej.2014.03.097Suche in Google Scholar

Jiang, W. T., Niu, D., Liu, H. Z., Wang, C. H., Zhao, T. T., Yin, L., Shi, Y. S., Chen, B. D., Ding, Y. C. and Lu, B. H., “Photoresponsive Soft-Robotic Platform: Biomimetic Fabrication and Remote Actuation", Adv. Funct. Mater., 24, 7598–7604 (2014), DOI:10.1002/adfm.20140207010.1002/adfm.201402070Suche in Google Scholar

Li, H., Go, G., Ko, S. Y., Park, J. O. and Park, S., “Magnetic Actuated pH-Responsive Hydrogel-Based Soft Micro-Robot for Targeted Drug Delivery", Smart Mater. Struc., 25, 027001–027010 (2016), DOI:10.1088/0964-1726/25/2/02700110.1088/0964-1726/25/2/027001Suche in Google Scholar

Liang, J. J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S. L., Baughman, R. H., Ma, Y. F. and Chen, Y. S., “Electromechanical Actuators Based on Graphene and Graphene/Fe3O4 Hybrid Paper", Adv. Funct. Mater., 21, 3778 –3784 (2011), DOI:10.1002/adfm.20110107210.1002/adfm.201101072Suche in Google Scholar

Liu, T. Y., Hu, S. H., Liu, T. Y., Liu, D. M. and Chen, S. Y., “Magnetic-Sensitive Behavior of Intelligent Ferrogels for Controlled Release of Drug", Langmuir, 22, 5974–5978 (2006), DOI:10.1021/la060371e10.1021/la060371eSuche in Google Scholar PubMed

Luo, R. C., Wu, J., Dinh, N. D. and Chen, C. H., “Gradient Porous Elastic Hydrogels with Shape-Memory Property and Anisotropic Responses for Programmable Locomotion", Adv. Funct. Mater., 25, 7272–7279 (2015), DOI:10.1002/adfm.20150343410.1002/adfm.201503434Suche in Google Scholar

Ma, C. X., Le, X. X., Tang, X. L., He, J., Xiao, P., Zheng, J., Xiao, H., Lu, W., Zhang, J. W., Huang, Y. J. and Chen, T., “A Multiresponsive Anisotropic Hydrogel with Macroscopic 3D Complex Deformations", Adv. Funct. Mater., 26, 8670–8676 (2016), DOI:10.1002/adfm.20160344810.1002/adfm.201603448Suche in Google Scholar

Ma, M. M., Guo, L., Anderson, D. G. and Langer, R., “Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients", Science, 339, 186 –189 (2013), DOI:10.1126/science.123026210.1126/science.1230262Suche in Google Scholar PubMed PubMed Central

Markert, C. D., Guo, X. Y., Skardal A., Wang, Z., Bharadwaj, S., Zhang, Y. Y., Bonin, K. and Guthold, M., “Characterizing the Micro-Scale Elastic Modulus of Hydrogels for Use in Regenerative Medicine", J. Mech. Behav. Biomed., 27, 115–127 (2013), DOI:10.1016/j.jmbbm.2013.07.00810.1016/j.jmbbm.2013.07.008Suche in Google Scholar PubMed

Pour, Z. S., Ghaemy, M., “Removal of Dyes and Heavy Metal Ions from Water by Magnetic Hydrogel Beads Based on Poly(vinyl alcohol)/Carboxymetyl Starch-g-Poly(vinyl imidazole)", RSC Adv., 5, 64106 –64118 (2015), DOI:10.1039/C5RA08025H10.1039/C5RA08025HSuche in Google Scholar

Sydney, G. A., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. and Lewis, J. A., “Biomimetic 4D Printing", Nature Mater., 15, 413 – 418 (2016), DOI:10.1038/NMAT454410.1038/NMAT4544Suche in Google Scholar PubMed

Wang, T., Huang, J. H., Yang, Y. Q., Zhang, E. Z., Sun, W. X. and Tong, Z., “Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels", ACS Appl. Mater. Interfaces, 7, 23423 –23430 (2015), DOI:10.1021/acsami.5b0824810.1021/acsami.5b08248Suche in Google Scholar PubMed

Yao, C., Liu, Z., Yang, C., Wang, W., Ju, X. J., Xie, R. and Chu, L. Y., “Poly(N-isopropylacrylamide)-Clay Nanocomposite Hydrogels with Responsive Bending Property as Temperature-Controlled Manipulators", Adv. Funct. Mater., 25, 2980–2991 (2015), DOI:10.1002/adfm.20150042010.1002/adfm.201500420Suche in Google Scholar

Zhang, E. Z., Wang, T., Hong, W., Sun, W. X., Liu, X. X. and Tong, Z., “Infrared-Driving Actuation Based on Bilayer Graphene Oxide-Poly(N-isopropylacrylamide) Nanocomposite Hydrogels", J. Mater. Chem. A, 2, 15633 –15639 (2014), DOI:10.1039/C4TA02866J10.1039/C4TA02866JSuche in Google Scholar

Zhao, Q., Liang, Y. H, Ren, L., Yu, Z. L, Zhang, Z. H. and Ren, L., “Bionic Intelligent Hydrogel Actuators with Multimodal Deformation and Locomotion", Nano Energy, 51, 621–631 (2018), DOI:10.1016/j.nanoen.2018.07.02510.1016/j.nanoen.2018.07.025Suche in Google Scholar

Zhao, Q., Liang, Y. H., Ren, L., Qiu, F., Zhang, Z. H. and Ren, L. Q., “Study on Temperature and Near-Infrared Driving Characteristics of Hydrogel Actuator Prepared via Molding and 3D Printing", J. Mech. Behav. Biomed., 78, 395–403 (2018), DOI:10.1016/j.jmbbm.2017.11.04310.1016/j.jmbbm.2017.11.043Suche in Google Scholar PubMed

Zhao, Q., Liang, Y. H., Ren, L., Yu, Z. L., Zhang, Z. H., Qiu, F. and Ren, L. Q., “Design and Fabrication of Nanofibrillated Cellulose-Containing Bilayer Hydrogel Actuators with Temperature and Near Infrared Laser Responses", J. Meter. Chem. B, 6, 1260 –1272 (2018), DOI:10.1039/C7TB02853A10.1039/C7TB02853ASuche in Google Scholar

Acknowledgements

The authors gratefully acknowledge the Cooperative Innovation Platform of National Oil Shale Exploration Development and Research, Project of National Key Research and Development Program of China (2018YFB1105100), the Foundation of State Key Laboratory of Automotive Simulation and Control (20171102), the National Natural Science Foundation (No 5167050531), Key Scientific and Technological Project of Jilin Province (20170204066GX) and China Postdoctoral Science Foundation (2019M661204).

Received: 2019-10-22
Accepted: 2020-10-01
Published Online: 2021-05-14
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-3904/html?lang=de
Button zum nach oben scrollen