Home Assessment of Impact Energy, Wear Behavior, Thermal Resistance and Water Absorption Properties of Hybrid Bagasse Fiber/CaCO3 Reinforced Polypropylene Composites
Article
Licensed
Unlicensed Requires Authentication

Assessment of Impact Energy, Wear Behavior, Thermal Resistance and Water Absorption Properties of Hybrid Bagasse Fiber/CaCO3 Reinforced Polypropylene Composites

  • I. O. Oladele EMAIL logo , A. D. Akinwekomi , I. O. Ibrahim , M. H. Adegun and S. I. Talabi
Published/Copyright: May 14, 2021
Become an author with De Gruyter Brill

Abstract

To harness the inherent advantages of both synthetic and natural reinforcements, mercerized bagasse fibers (BF) and particulate calcium carbonate (CaCO3) were utilized as a complementing reinforcement for the fabrication of bagasse fiber/calcium carbonate (BF/CaCO3) polypropylene composites. Two sets of composites were produced – one with mercerized BF/CaCO3 and the other with unmercerized BF/ CaCO3. The effect of reinforcement loading on the impact energy, wear behavior, thermal resistance and water absorption properties of the composites were studied. Results showed that the mercerized BF/CaCO3 hybrid reinforced polypropylene composites exhibited significant increase in impact energy and offered better resistance to weight loss during wear test. Similarly, the thermal resistance of the mercerized composites was higher than their corresponding unmercerized composites. Additionally, water absorption in mercerized composites was highly resisted than in unmercerized samples. These results indicated that mercerization treatment and reinforcement hybridization improved the impact energy, wear, thermal resistance and water ingress resistance of hybrid fiber/ particulate reinforced polypropylene composites.


* Mail address: Isiaka Oluwole Oladele, Department of Metallurgical and Materials Engineering, The Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria


References

Aframehr, W. M., Molki, B., Heidarian, P., Behzad, T., Sadeghi, M. and Bagheri, R., “Effect of Calcium Carbonate Nanoparticles on Barrier Properties and Biodegradability of Polylactic Acid", Fibers Polym., 18, 2041–2048 (2017), DOI:10.1007/s12221-017-6853-010.1007/s12221-017-6853-0Search in Google Scholar

Anggono, J., Farkas, Á. E., Bartos, A., Móczó, J., A., Purwaningsih, H. and Pukánszky, B., “Deformation and Failure of Sugarcane Bagasse Reinforced PP", Eur. Polym. J., 112, 153–160 (2019), DOI:10.1016/j.eurpolymj.2018.12.03310.1016/j.eurpolymj.2018.12.033Search in Google Scholar

ASTM D256–10, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics" (2010)Search in Google Scholar

ASTM D570–98, “Standard Test Method for Water Absorption of Plastics" (2018)Search in Google Scholar

Candido, V. S., da Silva, A. C. R., Simonassib, N. T., da Luzb, F. S. and Monteiro, S. N., “Toughness of Polyester Matrix Composites Reinforced with Sugarcane Bagasse Fibers Evaluated by Charpy Impact Tests", J. Mater. Res. Technol., 6, 334–338 (2017), DOI:10.1016/j.jmrt.2017.06.00110.1016/j.jmrt.2017.06.001Search in Google Scholar

Cao, Y., Shibata, S. and Fukumoto, I., “Mechanical Properties of Biodegradable Composites Reinforced with Bagasse Fibre before and after Alkali Treatments", Composites, Part A, 37, 423–429 (2006), DOI:10.1016/j.compositesa.2005.05.04510.1016/j.compositesa.2005.05.045Search in Google Scholar

Cerqueira, E. F., Baptista, C. A. R. P. and Mulinari, D. R., “Mechanical Behaviour of Polypropylene Reinforced Sugarcane Bagasse Fibers Composites", in Procedia Engineering, Elsevier Ltd., The Netherlands, p. 2046–2051 (2011), DOI:10.1016/j.proeng.2011.04.33910.1016/j.proeng.2011.04.339Search in Google Scholar

Chafidz, A., Kaavessina, M., Al-Zahrani, S. and Al-Otaibi, M. N., “Rheological and Mechanical Properties of Polypropylene/Calcium Carbonate Nanocomposites Prepared from Masterbatch", J. Thermoplast. Comp. Mater., 29, 593–622 (2016), DOI:10.1177/089270571453074710.1177/0892705714530747Search in Google Scholar

Chang, K. J., Wang, Y. Z., Peng, K. C., Tsai, H. S., Chen, J. R., Huang, C. T., Ho, K. S. and Lien, W. F., “Preparation of Silica Aerogel/ Polyurethane Composites for the Application of Thermal Insulation", J. Polym. Res., 21, 1–9 (2014), DOI:10.1007/s10965-013-0338-710.1007/s10965-013-0338-7Search in Google Scholar

Di, X., Gao, Y., Bao, C. and Ma, S. “Thermal Insulation Property and Service Life of Vacuum Insulation Panels with Glass Fiber Chopped Strand as Core Materials", Energy Build., 73, 176–183 (2014), DOI:10.1016/j.enbuild.2014.01.01010.1016/j.enbuild.2014.01.010Search in Google Scholar

Durowaye, S., Lawal, G., Sekunowo, O. and Onwuegbuchulem, A., “Synthesis and Characterization of Hybrid Polypropylene Matrix Composites Reinforced with Carbonized Terminalia Catappa Shell Particles and Turritela Communis Shell Particles", J. Taibah Univ. Sci., 12, 79–86 (2018), DOI:10.1080/16583655.2018.145111210.1080/16583655.2018.1451112Search in Google Scholar

Fernandes, E. M., Mano, J. F. and Reis, R. L., “Hybrid Cork-Polymer Composites Containing Sisal Fibre: Morphology, Effect of the Fibre Treatment on the Mechanical Properties and Tensile Failure Prediction", Compos. Struct., 105, 153–162 (2013), DOI:10.1016/j.compstruct.2013.05.01210.1016/j.compstruct.2013.05.012Search in Google Scholar

Hamdi, W. J., Habubi, N. F., “Preparation of Epoxy Chicken Eggshell Composite as Thermal Insulation", J. Aust. Ceram. Soc., 54, 231– 235 (2018), DOI:10.1007/s41779-017-0145-410.1007/s41779-017-0145-4Search in Google Scholar

Hartikainen, J., Hine, P., Szabó, J. S., Lindner, M., Harmia, T., Duckett, R. A. and Friedrich, K., “Polypropylene Hybrid Composites Reinforced with Long Glass Fibres and Particulate Filler", Compos. Sci. Technol., 65, 257–267 (2005), DOI:10.1016/j.compscitech.2004.07.01010.1016/j.compscitech.2004.07.010Search in Google Scholar

Hashim, M. Y., Roslan, M. N., Amin, A. M., Mujahid, A. and Zaidi, A., “Mercerization Treatment Parameter Effect on Natural Fibre Reinforced Polymer Matrix Composite: A Brief Review", World Acad. Sci. Eng. Technol., 6, 1382 –1388 (2012)Search in Google Scholar

Jing, Y., Nai, X., Dang, L., Zhu, D., Wang, Y., Dong, Y. and Li, W., “Reinforcing Polypropylene with Calcium Carbonate of Different Morphologies and Polymorphs", Sci. Eng. Compos. Mater., 25, 745–751 (2018), DOI:10.1515/secm-2015-030710.1515/secm-2015-0307Search in Google Scholar

Leong, Y. W., Mohd, Z. A. and Ariffin, A., “Mechanical and Thermal Properties of Talc and Calcium Carbonate Filled Polypropylene Hybrid Composites", J. Appl. Polym. Sci., 91, 3327–3336 (2004), DOI:10.1002/app.1354310.1002/app.13543Search in Google Scholar

Li, W., Dichiara, A. and Bai, J., “Carbon Nanotube – Graphene Nano-platelet Hybrids as High-Performance Multifunctional Reinforcements in Epoxy Composites", Compos. Sci. Technol., 74, 221– 227 (2013), DOI:10.1016/j.compscitech.2012.11.01510.1016/j.compscitech.2012.11.015Search in Google Scholar

Liu, C., Kwon, Y., “Mechanical and Thermal Insulation Properties of Porous Silica/Polyurethane Composites", J. Nanosci. Nanotechnol., 18, 6055–6062 (2018), DOI:10.1166/jnn.2018.1561210.1166/jnn.2018.15612Search in Google Scholar PubMed

Loh, Y. R., Sujan, D., Rahman, M. E. and Das, C. A., “Sugarcane Bagasse – The Future Composite Material: A Literature Review", Resour. Conserv. Recycl., 75, 14–22 (2013), DOI:10.1016/j.resconrec.2013.03.00210.1016/j.resconrec.2013.03.002Search in Google Scholar

Luz, S. M., Caldeira-Pires, A. and Ferrão, P. M. C., “Environmental Benefits of Substituting Talc by Sugarcane Bagasse Fibers as Reinforcement in Polypropylene Composites: Ecodesign and LCA as Strategy for Automotive Components", Resour. Conserv. Recycl., 54, 1135–1144 (2010), DOI:10.1016/j.resconrec.2010.03.00910.1016/j.resconrec.2010.03.009Search in Google Scholar

Mandal, A., Chakrabarty, D., “Studies on the Mechanical, Thermal, Morphological and Barrier Properties of Nanocomposites Based on Poly(vinyl alcohol) and Nanocellulose from Sugarcane Bagasse", J. Ind. Eng. Chem., 20, 462–473 (2014), DOI:10.1016/j.jiec.2013.05.00310.1016/j.jiec.2013.05.003Search in Google Scholar

Matějka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., Yun, R., Vaculík, M., Heliová, M. and Lu, Y., “Jute Fibers and Powderized Hazelnut Shells as Natural Fillers in Non-Asbestos Organic Non-Metallic Friction Composites", Mater. Des., 51, 847–853 (2013), DOI:10.1016/j.matdes.2013.04.07910.1016/j.matdes.2013.04.079Search in Google Scholar

Mokhena, T. C., Mochane, M. J., Motaung, T. E., Linganiso, L. Z., Thekisoe, O. M. and Songca, S. P., “Sugarcane Bagasse and Cellulose Polymer Composites", in Sugarcane – Technology and Research, InTech (2018), DOI:10.5772/intechopen.7149710.5772/intechopen.71497Search in Google Scholar

Moubarik, A., Grimi, N. and Boussetta, N., “Structural and Thermal Characterization of Moroccan Sugar Cane Bagasse Cellulose Fibers and their Applications as a Reinforcing Agent in Low Density Polyethylene", Composites, Part B, 52, 233 –238 (2013), DOI:10.1016/j.compositesb.2013.04.04010.1016/j.compositesb.2013.04.040Search in Google Scholar

Mulinari, D. R., Cipriano, J. D. P., Capri, M. R. and Brandão, A.T., “Influence of Surgarcane Bagasse Fibers with Modified Surface on Polypropylene Composites", J. Nat. Fibers, 5, 174 –182 (2018), DOI:10.1080/15440478.2016.126629410.1080/15440478.2016.1266294Search in Google Scholar

Oladele, I. O., “Effect of Bagasse Fibre Reinforcement on the Mechanical Properties of Polyester Composites", J. Assoc. Prof. Eng. Trinidad Tobago, 42, 12–15 (2014)Search in Google Scholar

Oladele, I. O., Ibrahim, I. O., Akinwekomi, A. D. and Talabi, S. I., “Effect of Mercerization on the Mechanical and Thermal Response of Hybrid Bagasse Fiber/CaCO3 Reinforced Polypropylene Composites", Polym. Test., 76, 192–198 (2019), DOI:10.1016/j.polymertesting.2019.03.02110.1016/j.polymertesting.2019.03.021Search in Google Scholar

Oushabi, A., Sair, S., Abboud, Y., Tanane, O. and Bouari, A. El, “An Experimental Investigation on Morphological, Mechanical and Thermal Properties of Date Palm Particles Reinforced Polyurethane Composites as New Ecological Insulating Materials in Building", Case Stud. Constr. Mater., 7, 128–137 (2017), DOI:10.1016/j.cscm.2017.06.00210.1016/j.cscm.2017.06.002Search in Google Scholar

Pang, A. L., Ismail, H. and Abu Bakar, A., “Tensile Properties, Water Resistance, and Thermal Properties of linear Low-Density Polyethylene/Polyvinyl Alcohol/Kenaf Composites: Effect of 3-(Trimethoxysilyl) Propyl Methacrylate (TMS) as a Silane Coupling Agent", BioResources, 11, 5889–5904 (2016), DOI:10.15376/biores.11.3.5889-590410.15376/biores.11.3.5889-5904Search in Google Scholar

Panyakaew, S., Fotios, S., “New Thermal Insulation Boards Made from Coconut Husk and Bagasse", Energy Build., 43, 1732–1739 (2011), DOI:10.1016/j.enbuild.2011.03.01510.1016/j.enbuild.2011.03.015Search in Google Scholar

Părpăriţă, E., Darie, R. N., Popescu, C. M., Uddin, M. A. and Vasile, C., “Structure-Morphology-Mechanical Properties Relationship of some Polypropylene/Lignocellulosic Composites", Mater. Des., 56, 763–772 (2014), DOI:10.1016/j.matdes.2013.12.03310.1016/j.matdes.2013.12.033Search in Google Scholar

Pereira, A. A., Martins, G. F., Antunes, P. A., Conrrado, R., Pasquini, D., Job, A. E., Curvelo, A. A. S., Ferreira, M., Riul, A. and Constantino, C. J. L., “Lignin from Sugar Cane Bagasse: Extraction, Fabrication of Nanostructured Films, and Application", Langmuir, 23, 6652 –6659 (2007), DOI:10.1021/la063582s10.1021/la063582sSearch in Google Scholar PubMed

Ramanaiah, K., Ratna Prasad, A. V. and Hema Chandra Reddy, K., “Thermal and Mechanical Properties of Waste Grass Broom Fiber-Reinforced Polyester Composites", Mater. Des., 40, 103–108 (2012), DOI:10.1016/j.matdes.2012.03.03410.1016/j.matdes.2012.03.034Search in Google Scholar

Sabah, A.-S. I., Metwally, M., Abdel-Hakim, A. A., El Begawy, S. and Elshafie, E. S., “Effect of Mineral Fillers on Rice Straw Fiber/High Density Polyethylene Composites", Nat. Sci., 9, 116–124 (2011)Search in Google Scholar

Sair, S., Oushabi, A., Kammouni, A., Tanane, O., Abboud, Y. and El Bouari, A. ,“Mechanical and Thermal Conductivity Properties of Hemp Fiber Reinforced Polyurethane Composites", Case Stud. Constr. Mater., 8, 203–212 (2018), DOI:10.1016/j.cscm.2018.02.00110.1016/j.cscm.2018.02.001Search in Google Scholar

Siligardi, C., Miselli, P., Francia, E. and Lassinantti Gualtieri, M., “Temperature-Induced Microstructural Changes of Fiber-Reinforced Silica Aerogel (FRAB) and Rock Wool Thermal Insulation Materials: A Comparative Study", Energy Build., 138, 80–87 (2017), DOI:10.1016/j.enbuild.2016.12.02210.1016/j.enbuild.2016.12.022Search in Google Scholar

Suharty, N. S., Almanar, I. P., Sudirman, Dihardjo, K. and Astasari, N., “Flammability, Biodegradability and Mechanical Properties of Bio-Composites Waste Polypropylene/Kenaf Fiber Containing Nano CaCO3 with Diammonium Phosphate", Procedia Chem., 4, 282 – 287 (2012), DOI:10.1016/j.proche.2012.06.03910.1016/j.proche.2012.06.039Search in Google Scholar

Yan, L., Chouw, N. and Yuan, X., “Improving the Mechanical Properties of Natural Fibre Fabric Reinforced Epoxy Composites by Alkali Treatment", J. Reinf. Plast. Compos., 31, 425–437 (2012), DOI:10.1177/073168441243949410.1177/0731684412439494Search in Google Scholar

Received: 2020-05-06
Accepted: 2020-10-13
Published Online: 2021-05-14
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-3984/html
Scroll to top button