Home Multilevel Analysis of Strain Rate Effect on Visco-Damage Evolution in Short Random Fiber Reinforced Polymer Composites
Article
Licensed
Unlicensed Requires Authentication

Multilevel Analysis of Strain Rate Effect on Visco-Damage Evolution in Short Random Fiber Reinforced Polymer Composites

  • M. D. D. Boudiaf , L. Hemmouche EMAIL logo , M. A. Louar , A. May and N. Mesrati
Published/Copyright: May 14, 2021
Become an author with De Gruyter Brill

Abstract

In this study, the strain rate sensitivity of a discontinuous short fiber reinforced composite and the strain rate effect on the damage evolution are investigated. The studied material is a polymeric composite with a polyamide 6.6 matrix reinforced with oriented randomly short glass fibers at a 50% weigh ratio (PA6.6GF50). Tensile tests at low and high strain rate are conducted. In addition, interrupted tensile tests are carried out to quantify the damage at specific stress levels and strain rates. To perform the interrupted tensile tests, an intermediate fixture is realized via double notched mechanical fuses with different widths designed to break at suitable stress levels. The damage is estimated by the fraction of debonded fibers and matrix fractures. Based on the experimental observations, it is concluded that the ultimate stress and strain, and the damage threshold are mainly governed by the strain rate. Furthermore, it is established that the considered composite has a non-linear dynamic behavior with a viscous damage nature.


* Mail address: L. Hemmouche, Laboratoire Génie des Matériaux, Ecole Militaire Polytechnique Bordj El Bahri, 16111 Alger, Algérie


References

Amirkhanov, Al., Amirkhanov, Ar., Salaberger, D., Kastner, J., Gröller, M. E. and Heinzl, C., “Visual Analysis of Defects in Glass Fiber Reinforced Polymers for 4dct Interrupted in situ Tests", Eurographics Conference on Visualization (EuroVis), 35, 201–210 (2016), DOI:10.1111/cgf.1289610.1111/cgf.12896Search in Google Scholar

Armattoe, K. M., Roycki, P. and Mbacke, M., “Numerical and Experimental Characterization of the Hygrothermal and Strain Rate Dependent Behavior of Woven Glass Fiber Reinforced Polyamide", ECCM17, Munich, Germany, 26–30th June (2016), DOI:10.1016/j.compstruct.2014.04.01810.1016/j.compstruct.2014.04.018Search in Google Scholar

Ayoub, G., Zaïri, F., Naït-Abdelaziz, M. and Gloaguen, J. M., “Modelling Large Deformation Behaviour under Loading–Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene", Int. J. Plasticity. 26, 329–347 (2010), DOI:10.1016/j.ijplas.2009.07.00510.1016/j.ijplas.2009.07.005Search in Google Scholar

Barré, S., Chotard, T. and Benzaggagh, M. L., “Comparative Study of Strain Rate Effects on Mechanical Properties of Glass Fibre Reinforced Thermoset Matrix Composites", Composites Part A, 27, 69–81 (1996), (96) 00075–9, DOI:10.1016/1359-835X10.1016/1359-835XSearch in Google Scholar

Bek, L., Zemčík, R., “Model of Progressive Failure for Composite Materials Using the 3d Puck Failure Criterion", Materiali in tehnologije/Materials and Technology, 50, 319–322 (2016), DOI:10.17222/mit.2014.23310.17222/mit.2014.233Search in Google Scholar

Boisot, G., Laiarinandrasana, L., Besso, J., Fond, C. and Hochstetter, G., “Experimental Investigations and Modeling of Volume Change Induced by Void Growth in Polyamide 11", Int. J. Solids Struct., 48 (2011) 2642–2654, DOI:10.1016/j.ijsolstr2011.05.01610.1016/j.ijsolstr2011.05.016Search in Google Scholar

Boudiaf, M. D. D., Mesrati, N., “Micromechanical Modeling of Random Short Fiber Reinforced Polymer Composites with Progressive Debending Damage", Mechanika., 24, 182–190 (2018), DOI:10.5755/j01.mech.24.2.1816510.5755/j01.mech.24.2.18165Search in Google Scholar

Chen, W., Hao, H., Jong, M., Cui, J., Shi, Y., Chen, L. and Pham, T. M., “Quasi-Static and Dynamic Tensile Properties of Basalt Fibre Reinforced Polymer", Composites Part B, 125, 123 –133 (2017), DOI:10.1016/J.COMPOSITESB.2017.05.06910.1016/J.COMPOSITESB.2017.05.069Search in Google Scholar

Daouadji, T. H., Belkacem, A., “Theoretical Analysis of Composite Beams under Uniformly Distributed Load", Adv. Mater. Res., 5, 1–9(2016), DOI:10.12989/amr.2016.5.1.00110.12989/amr.2016.5.1.001Search in Google Scholar

Fitoussi, J., Bocquet, M. and Meraghni, F., “Effect of the Matrix Behavior on the Damage of Ethylene–Propylene Glass Fiber Reinforced Composite Subjected to High Strain Rate Tension", Composites Part B, 45, 1181–1191 (2013), DOI:10.1016/j.compositesb.2012.06.01110.1016/j.compositesb.2012.06.011Search in Google Scholar

Fitoussi, J., Guo, G. and Baptiste, D., “A Statistical Micromechanical Model of Anisotropic Damage for S.M.C. Composites", Compos. Sci. Technol., 58, 759–763 (1998), DOI:10.1016/S0266 3538(97)00163-210.1016/S02663538(97)00163-2Search in Google Scholar

Laiarinandrasana, L., Morgeneyer, T. F., Proudhon, H. and Regrain, C., “Damage of Semicrystalline Polyamide 6 Assessed by 3d XRay Tomography: from Microstructural Evolution to Constitutive Modeling", J. Polym. Sci. B. Polym. Phys., 48, 1516–1525 (2010), DOI:10.1002/polb.2204310.1002/polb.22043Search in Google Scholar

Mesbah, A., Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J. M., Anoukou, K., Zaoui, A., Qu, Z., Boukharouba, T. and Lefebvre, J. M., “Micromechanics-Based Constitutive Modeling of Plastic Yielding and Damage Mechanisms in Polymer–Clay Nanocomposites: Application to Polyamide-6 and Polypropylene-Based Nanocomposites", Compos. Sci. Technol., 101, 71–78(2014), DOI:10.1016/j .compscitech.2014.05.03210.1016/j.compscitech.2014.05.032Search in Google Scholar

Okoli, O. I., Smith, G. F., “High Strain Rate Characterization of a Glass/Epoxy Composite", J. Compos. Technol. Res., 22, 3–11 (2000), DOI:10.1520/CTR10619J10.1520/CTR10619JSearch in Google Scholar

Pomarède, P., Meraghni, F., Peltier, L., Delalande, S. and Declercq, N. F., “Damage Evaluation in Woven Glass Reinforced Polyamide 6.6/6 Composites Using Ultrasound Phase-Shift Analysis and X-Ray Tomography", J. Nondestruct. Eval., 1, 37 –12 (2018), DOI:10.1007/s10921-018-0467-310.1007/s10921-018-0467-3Search in Google Scholar

Selles, N., Cloetens, P., Proudhon, H., Morgeneyer, T. F., Klinkova, O., Saintier, N. and Laiarinandrasana, L., “Voiding Mechanisms in Deformed Polyamide 6 Observed at the Nanometric Scale", Macromolecules, 50, 4372 –4383 (2017), DOI:10.1021/Acs.Macromol.7b0072710.1021/Acs.Macromol.7b00727Search in Google Scholar

Selles, N., Nguyen, F., Morgeneyer, T. F., Proudhon, H., Ludwig, W. and Laiarinandrasana, L., “Comparison of Voiding Mechanisms in Semi-Crystalline Polyamide 6 during Tensile and Creep Tests", Polym. Test., 49, 137–146 (2016), DOI:10.1016/j.polymertesting.2015.11.01910.1016/j.polymertesting.2015.11.019Search in Google Scholar

Tobalina-Baldeon, D., Sanz-Adan, F., Martinez-Calvo, M. A. and Santamaría-Pena, J., “Dynamic Tensile Stress-Compressive Stress Behavior of Thermoplastic Matrix Composite Materials Reinforced with Continuous Fiber for Automotive Damping and Anti-Vibration Structural Elements", Materials, 13, 1–16 (2020), DOI:10.3390/ma1301000510.3390/ma13010005Search in Google Scholar PubMed PubMed Central

Received: 2020-09-14
Accepted: 2020-12-04
Published Online: 2021-05-14
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-4045/html
Scroll to top button