Abstract
Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)-based nanocomposites filled with 1 vol.% silicon dioxide nanoparticles (nano-SiO2) were prepared using a co-rotating twin-screw extruder and injection molding. The nanocomposites with various blending sequences were investigated using PLA-based and PBAT-based nanocomposite masterbatches. Morphology of the PLA/PBAT/SiO2 nanocomposites was examined using a scanning electron microscope (SEM) and a focused ion beam (FIB) SEM. It is found that the nano-SiO2 locates in the original polymer phase, in which it is firstly incorporated in the masterbatch process, as well as at the interface between the two polymers. However, as the residence time in the extrusion process increases, the nanoparticles migrate from the original phase to the interface, governed by the thermodynamic driving force. The best optimization of mechanical properties is achieved by using the PBAT-based masterbatches with a one-step process or short residence time. The processing history, therefore, has a tremendous impact on the final properties of the resulting materials.
References
Asai, S., Sakata, K., Sumita, M. and Miyasaka, K., “Effect of Interfacial Free Energy on the Heterogeneous Distribution of Oxidized Carbon Black in Polymer Blends", Polym. J., 24, 415 –420 (1992), DOI:10.1295/polymj.24.41510.1295/polymj.24.415Search in Google Scholar
Bitinis, N., Verdejo, R., Maya, E. M., Espuche, E., Cassagnau, P. and Lopez-Manchado, M. A., “Physicochemical Properties of Organoclay Filled Polylactic Acid/Natural Rubber Blend Bionanocomposites", Compos. Sci. Technol., 72, 305–313 (2012), DOI:10.1016/j.compscitech.2011.11.01810.1016/j.compscitech.2011.11.018Search in Google Scholar
Brandrup, J., Immergut, E. H.: Polymer Handbook, 3rd Edition, John Wiley and Sons, New York (1989)Search in Google Scholar
Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X. and Auras, R., “Poly(lactic acid)-Mass Production, Processing, Industrial Applications, and End of Life", Adv. Drug Delivery Rev., 107, 333–366 (2016), DOI:10.1016/j.addr.2016.03.01010.1016/j.addr.2016.03.010Search in Google Scholar PubMed
Underwood, E. E., “Chapter 6 Particle-size Distribution“, in Quantitative Microscopy, DeHoff, R. T., Rhines, F. N. (Eds.), Mcgraw-Hill, New York, p. 149 –200 (1968)Search in Google Scholar
Dil, E. J., Virgilio, N. and Favis, B. D., “The Effect of the Interfacial Assembly of Nano-Silica in Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends on Morphology, Rheology and Mechanical Properties", Eur. Polym. J., 85, 635–646 (2016a), DOI:10.1016/j.eurpolymj.2016.07.02210.1016/j.eurpolymj.2016.07.022Search in Google Scholar
Dil, E. J., Arjmand, M., Li, Y., Sundararaj, U. and Favis, B. D., “Assembling Copper Nanowires at the Interface and in Discrete Phases in PLA-Based Polymer Blends", Eur. Polym. J., 85, 187–197 (2016b), DOI:10.1016/j.eurpolymj.2016.09.05310.1016/j.eurpolymj.2016.09.053Search in Google Scholar
Elias, L., Fenouillot, F., Majeste, J. C. and Cassagnau, Ph., “Morphology and Rheology of Immiscible Polymer Blends Filled with Silica Nanoparticles", Polym., 48, 6029–6040 (2007), DOI:10.1016/j.polymer.2007.07.06110.1016/j.polymer.2007.07.061Search in Google Scholar
Fowkes, F. M., “Determination of Interfacial Tensions, Contact Angles, and Dispersion Forces in Surfaces by Assuming Additivity of Intermolecular Interactions in Surfaces", J. Phys. Chem., 66, 382–382 (1962), DOI:10.1021/j100808a52410.1021/j100808a524Search in Google Scholar
Garlotta, D., “A Literature Review of Poly(lactic acid)", J. Polym. Environ., 9, 63–84 (2001), DOI:10.1023/A:102020082243510.1023/A:1020200822435Search in Google Scholar
Gu, S., Zhang, K., Ren, J. and Zhan, H., “Melt Rheology of Polylactide/Poly(butylene adipate-co-terephthalate) Blends", Carbohydr. Polym., 74, 79–85 (2008), DOI:10.1016/j.carbpol.2008.01.01710.1016/j.carbpol.2008.01.017Search in Google Scholar
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. and Desobry, S., “Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies", Compr. Rev. Food Sci. Food Saf., 9, 552–571 (2010), DOI:10.1111/j.1541-4337.2010.00126.x10.1111/j.1541-4337.2010.00126.xSearch in Google Scholar PubMed
Javidi, Z., Tarashi, Z., Rostami, A. and Nazockdast, H., “Role of Nanosilica Localization on Morphology Development of HDPE/PS/ PMMA Immiscible Ternary Blends", eXPRESS Polym. Lett., 11, 362–373 (2017), DOI:10.3144/expresspolymlett.2017.3510.3144/expresspolymlett.2017.35Search in Google Scholar
Jiang, L., Wolcott, M. P. and Zhang, J., “Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends." Biomacromolecules, 7, 199– 207 (2006), DOI:10.1021/bm050581q10.1021/bm050581qSearch in Google Scholar PubMed
Laoutid, F., François, D., Paint, Y., Bonnaud, L. and Dubois, P., “Using Nanosilica to Fine-Tune Morphology and Properties of Polyamide 6/Poly(propylene) Blends", Macromol. Mater. Eng., 298, 328–338 (2013), DOI:10.1002/mame.20120004710.1002/mame.201200047Search in Google Scholar
Li, Wenjing, Karger-Kocsis, J. and Schlarb, A. K., “Dispersion of TiO2 Particles in PET/PP/TiO2 and PET/PP/PP-g-MA/TiO2 Composites Prepared with Different Blending Procedures", Macromol. Mater. Eng., 294, 582– 589 (2009), DOI:10.1002/mame.20090012310.1002/mame.200900123Search in Google Scholar
Liu, H., Zhang, J., “Research Progress in Toughening Modification of Poly(lactic acid)", J. Polym. Sci., Part B: Polym. Phys., 49, 1051 – 1083 (2011), DOI:10.1002/polb.2228310.1002/polb.22283Search in Google Scholar
Nomai, J., Schlarb, A. K., “Effects of Nanoparticle Size and Concentration on Optical, Toughness, and Thermal Properties of Polycarbonate", J. Appl. Polym. Sci., 136, 47634 (2019), DOI:10.1002/app.4763410.1002/app.47634Search in Google Scholar
Owens, D. K., Wendt, R. C., “Estimation of the Surface Free Energy of Polymers". J. Appl. Polym. Sci., 13, 1741 –1747 (1969), DOI:10.1002/app.1969.07013081510.1002/app.1969.070130815Search in Google Scholar
Saeidlou, S., Huneault, M. A., Li, H. and Park, C. B., “Poly(actic acid) Crystallization", Prog. Polym. Sci., 37, 1657 –1677 (2012), DOI:10.1016/j.progpolymsci.2012.07.00510.1016/j.progpolymsci.2012.07.005Search in Google Scholar
Sumita, M., Sakata, K., Asai, S., Miyasaka, K. and Nakagawa, H., “Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black". Polym. Bull., 25, 265–271 (1991), DOI:10.1007/BF0031080210.1007/BF00310802Search in Google Scholar
Taguet, A., Cassagnau, P. and Lopez-Cuesta, J. M., “Structuration, Selective Dispersion and Compatibilizing Effect of (nano)Fillers in Polymer Blends", Prog. Polym. Sci., 39, 1526–1563 (2014), DOI:10.1016/j.progpolymsci.2014.04.00210.1016/j.progpolymsci.2014.04.002Search in Google Scholar
Van Kravelen, D.: Properties of Polymers, 3rd Edition, Elsevier, Amsterdam (1997)Search in Google Scholar
Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., Wang, D. and Lin, B., “Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends", Macromol. Chem. Phys., 212, 613 –626 (2011), DOI:10.1002/macp.20100057910.1002/macp.201000579Search in Google Scholar
Wu, S.: Polymer Interface and Adhesion, 1st Edition, Taylor & Francis, Florida (1982)Search in Google Scholar
Wu, S., “A Generalized Criterion for Rubber Toughening: The Critical Matrix Ligament Thickness“, J. Appl. Polym. Sci., 35, 549–561 (1988), DOI:10.1002/app.1988.07035022010.1002/app.1988.070350220Search in Google Scholar
Xiao, H., Lu, W. and Yeh, J., “Crystallization Behavior of Fully Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends", J. Appl. Polym. Sci., 112, 3754 –3763 (2009), DOI:10.1002/app.2980010.1002/app.29800Search in Google Scholar
Zhang, K., Nagarajan, V., Misra, M. and Mohanty, A. K., “Supertoughened Renewable PLA Reactive Multiphase Blends System: Phase Morphology and Performance", ACS Appl. Mater. Interfaces, 6, 12436–12448 (2014), DOI:10.1021/am502337u10.1021/am502337uSearch in Google Scholar PubMed
Acknowledgements
The authors wish to acknowledge the support from BASF SE (Dr. N. Effen) (Ludwigshafen, Germany) for providing the materials. We also would like to thank Dr. S. Wolff and Dr. T. Löber (Nano Structuring Center (NSC), Technische Universität Kaiserslautern) for performing the SEM and FIB-SEM investigations, respectively.
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Frontmatter
- Review Article
- Extraction, Treatment and Applications of Natural Fibers for Bio-Composites – A Critical Review
- Regular Contributed Articles
- Multi-Layer Counter-Pressure Injection Molding for Thick-Walled Optical Lens
- Enhancing the Thermal and Mechanical Characteristics of Polyvinyl Alcohol (PVA)-Hemp Protein Particles (HPP) Composites
- A Comparative Fatigue Analysis of GFRP, CFRP and Structural Steel for Connecting Rod Using ANSYS
- Morphological and Mechanical Properties of Thermoplastic Elastomers Based on Recycled High Density Polyethylene and Recycled Natural Rubber
- Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators
- Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes
- New Approach to Melt Pressure Determination during Screw Channel Flow
- Effect of Basalt Intraply Fiber Hybridization on the Compression Behavior of Filament Wound Composite Pipes
- Assessment of Impact Energy, Wear Behavior, Thermal Resistance and Water Absorption Properties of Hybrid Bagasse Fiber/CaCO3 Reinforced Polypropylene Composites
- Multilevel Analysis of Strain Rate Effect on Visco-Damage Evolution in Short Random Fiber Reinforced Polymer Composites
- The Effect of the Compounding Procedure on the Morphology and Mechanical Properties of PLA/PBAT-Based Nanocomposites
- PPS News
- Seikei-kakou abstracts
- PPS Membership application
Articles in the same Issue
- Frontmatter
- Review Article
- Extraction, Treatment and Applications of Natural Fibers for Bio-Composites – A Critical Review
- Regular Contributed Articles
- Multi-Layer Counter-Pressure Injection Molding for Thick-Walled Optical Lens
- Enhancing the Thermal and Mechanical Characteristics of Polyvinyl Alcohol (PVA)-Hemp Protein Particles (HPP) Composites
- A Comparative Fatigue Analysis of GFRP, CFRP and Structural Steel for Connecting Rod Using ANSYS
- Morphological and Mechanical Properties of Thermoplastic Elastomers Based on Recycled High Density Polyethylene and Recycled Natural Rubber
- Design and Preparation of Magnetism-Driven Intelligent Hydrogel Actuators
- Synthesis of a Flame Retardant for Epoxy Resins: Thermal Stability, Flame Retardancy, and Flame-Retardant Modes
- New Approach to Melt Pressure Determination during Screw Channel Flow
- Effect of Basalt Intraply Fiber Hybridization on the Compression Behavior of Filament Wound Composite Pipes
- Assessment of Impact Energy, Wear Behavior, Thermal Resistance and Water Absorption Properties of Hybrid Bagasse Fiber/CaCO3 Reinforced Polypropylene Composites
- Multilevel Analysis of Strain Rate Effect on Visco-Damage Evolution in Short Random Fiber Reinforced Polymer Composites
- The Effect of the Compounding Procedure on the Morphology and Mechanical Properties of PLA/PBAT-Based Nanocomposites
- PPS News
- Seikei-kakou abstracts
- PPS Membership application