Startseite Viscoplastic Material Modeling for the Stretch Blow Molding Simulation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Viscoplastic Material Modeling for the Stretch Blow Molding Simulation

  • S. Wang , A. Makinouchi , M. Okamoto , T. Kotaka , M. Maeshima , N. Ibe und T. Nakagawa
Veröffentlicht/Copyright: 23. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the viscoplastic material model of PET (polyethylene terephthalate), which is intended to be used in the FEM (finite element method) simulation of stretch blow molding process, has been studied. Material tests of PET were performed with the constant strain rates varying from 0.01 to 1 (1/s), at temperatures ranging from 90 to 150 °C, based on the obtained data a two-stage model was proposed. The proposed model could precisely take into account the effects of strain hardening, strain rate sensitivity, variation of the hardening index, and temperature dependency. This model has been implemented into the nonlinear finite element code PBLOW3D, which is developed in the Riken, and its performance in the stretch blow molding simulation has been studied. It has been demonstrated that the proposed material model provides significant improvements, compared with two existing material models, in the simulation of the blow molding process of PET bottles.


Dr. S. Wang, Materials Fabrication Lab., Institute of Physical and Chemical Reserarch, Riken, Hirozawa 2–1, Waho-shi, Saitama, 351–0198, Japan


References

1 deLorenzi, H.G., Nied, H.F., Taylor, C.A.: Computational Experiments, ASME PVP 176, p. 1 (1989)Suche in Google Scholar

2 Kouba, K., Vlachopoulos, J.: Proceedings XIth Congress on Rheology, Brussels, Belgium, p. 374 (1992)10.1016/B978-0-444-89007-8.50150-7Suche in Google Scholar

3 Laroche, D., Kabanemi, K.K., Pecora, L., Diraddo, R.W., Savoni, L., Puemple, A.: SPE Antec Tech. Papers, p. 774 (1998)Suche in Google Scholar

4 Vantal, M.H., Monasse, B., Bellet, M.: Proceedings Numiform, p. 1089, Ithaca, N.Y., USA (1995)Suche in Google Scholar

5 Wang, S., Makinouchi, A., Okamoto, M., Kotaka, T., Tosa, T., Kidokoro, K., Nakagawa, T.: Proceedings Numiform, p. 441, Netherlands (1998)Suche in Google Scholar

6 Isaki, I., Takahashi, M., Takigawa, T., Masuda, T.: Rheol. Acta 30, p. 530 (1991)10.1007/BF00444371Suche in Google Scholar

7 Takahashi, M., Isaki, T., Takigawa, T., Masuda, T.: J. Rheol. 37, p. 827 (1993)10.1122/1.550397Suche in Google Scholar

8 Meissner, J., Hosettler, J.: Rheol. Acta 33, p. 1 (1994)10.1007/BF00453459Suche in Google Scholar

9 Hartwig, K., Michaeli, W.: Proceedings Numiform p. 1029, Ithaca, N.Y., USA (1995)Suche in Google Scholar

10 Wang, S., Makinouchi, A., Nakagawa, T.: Advances in Polymer Technology 17, p. 189 (1998)10.1002/(SICI)1098-2329(199823)17:3<189::AID-ADV1>3.0.CO;2-OSuche in Google Scholar

11 Imamura, S., Kaneta, T., Kushima, K., Ohta, A., Herai, T., Koyama, K.: Journal of the Japan Society of Polymer Processing 6, p. 797 (1994)10.4325/seikeikakou.6.797Suche in Google Scholar

Received: 1999-08-03
Accepted: 1999-12-27
Published Online: 2022-02-23

© 2000 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2000-0008/pdf?lang=de
Button zum nach oben scrollen