Numerical Simulation of Compression Molding of UHMWPE
-
N. C. Parasnis
Abstract
In this paper we describe a model to predict crystallinity from thermal history while compression molding UHMWPE. A thermal model is used for temperature predictions within a compression molded disc. The temperature predictions are used in a residual stress model (see Part II of this paper). Three different process cycles were studied, one with fast cooling, one with slow cooling and one with soak at crystallization.
References
1 Kwon, T.H., Kim, C.S.: Journal of Engineering Materials and Technology 117, p. 239 (1995)10.1115/1.2804536Search in Google Scholar
2 Ahmed, A., Alexandrou, A.N.: Advances in Polymer Technology, 11, p. 203 (1992)10.1002/adv.1992.060110304Search in Google Scholar
3 Chen. Y.F., Voller, V.R., Stelson, K.A.: Polymer Composites 17, p. 414 (1996)10.1002/pc.10629Search in Google Scholar
4 Mantell, S.C., Springer, G.S.: Journal of Composite Materials 26, p. 2348 (1992)10.1177/002199839202601602Search in Google Scholar
5 Avrami, M.: Journal of Chemical Physics 7, p. 1103 (1939)10.1063/1.1750380Search in Google Scholar
6 Avrami, M.: Journal of Chemical Physics 8, p. 212 (1940)10.1063/1.1750631Search in Google Scholar
7 Avrami, M.: Journal of Chemical Physics 9, p. 177 (1941)10.1063/1.1750872Search in Google Scholar
8 Ozawa, T.: Polymer 12, p. 150 (1971)10.1016/0032-3861(71)90041-3Search in Google Scholar
9 Icenogle, R.D.: Journal of Polymer Science: Polymer Physics Edition 23, p. 1369 (1985)10.1002/pol.1985.180230706Search in Google Scholar
10 Wasiak, A.: Chemtracts Macromolecular Chemistry 2, p. 211 (1991)Search in Google Scholar
11 Eder, G., Janeschitz-Kriegl, H., Liedauer, S.: Progress in Polymer Science 15, p. 629 (1990)10.1016/0079-6700(90)90008-OSearch in Google Scholar
12 Phillips, R., Manson, J.-A.E.: Journal of Polymer Science: Part B, Polymer Physics Edition 35, p. 875 (1997)10.1002/(SICI)1099-0488(19970430)35:6<875::AID-POLB2>3.0.CO;2-HSearch in Google Scholar
13 Library, P.D.: New York, Plastics Design Library 1, p. 302 (1990)Search in Google Scholar
14 Taylor, R.E., Maglic, K.D.: Pulse Method for Thermal Diffusivity Measurement. Plenum, New York (1984)10.1007/978-1-4615-6678-6_10Search in Google Scholar
15 Ramsey, J.C., III, Fricke, A.L., Caskey, J.A.: Journal of Applied Polymer Science 17, p. 1597 (1973)10.1002/app.1973.070170522Search in Google Scholar
16 Elenbaas, W.: Journal of Applied Physics 19, p. 1148 (1949)10.1063/1.1715035Search in Google Scholar
17 Porter, R.S., Wang, L.-H.: Journal of Thermal Analysis 46, p. 871– 878 (1996)10.1007/BF01983607Search in Google Scholar
18 Wunderlich, B., Cormier, C.M.: Journal of Polymer Science: Part A-2, 5, p. 987 (1967)10.1002/pol.1967.150050504Search in Google Scholar
19 Janeschitz-Kriegl, H., Wippel, H., Paulik, C., Eder, G.: Colloid and Polymer Science 271, p. 1107 (1993)10.1007/BF00657065Search in Google Scholar
20 Wu, C.H., Eder, G., Janeschitz-Kriegl, H.: Colloid and Polymer Science 271, p. 1116 (1993)10.1007/BF00657066Search in Google Scholar
21 Ziabicki, A.: Colloid and Polymer Science 252, p. 207 (1974)10.1007/BF01638101Search in Google Scholar
22 Ziabicki, A.: Colloid and Polymer Science 252, p. 433 (1974)10.1007/BF01554749Search in Google Scholar
23 Hoffman, J.D., Davis, G.T., Lauritzen, J.I.: The rate of crystallization of linear polymers with chain folding. Plenum, New York (1976)10.1007/978-1-4684-2664-9_7Search in Google Scholar
24 Fatou, J.G., Marco, C., Mandelkern, L.: Polymer 31, p. 1685 (1990)10.1016/0032-3861(90)90186-3Search in Google Scholar
25 Godovsky, Y.K.: Thermophysical Properties of Polymers. Springer-Verlag, New York (1992)10.1007/978-3-642-51670-2Search in Google Scholar
26 Oehmke, F., Wiegmann, T.: Measuring thermal conductivity under high pressure, Antec, San Francisco, CA, p. 2240 (1994)Search in Google Scholar
27 Privalko, V.P., Rekhteta, N.A.: Journal of Thermal Analysis 38, p. 1083 (1992)10.1007/BF01979171Search in Google Scholar
28 Ding, Z., Spruiell, J.E.: Journal of Polymer Science: Polymer Physics Edition 35, p. 1077 (1997)10.1002/(SICI)1099-0488(199705)35:7<1077::AID-POLB7>3.0.CO;2-TSearch in Google Scholar
29 Parasnis, N.C., Ramani, K.: Journal of Thermal Analysis 55, p. 709 (1999)10.1023/A:1010139110366Search in Google Scholar
© 2000 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Editorial
- Second of a Series: Pioneering Polymer Industry Developments—The IG Farbenindustrie and the Establishment of Synthetic Rubber
- Screw extrusion/mixing
- Analysis of Mixing in Corotating Twin Screw Extruders through Numerical Simulation
- Melt Conveying in Co-rotating Twin Screw Extruders
- The Adjustable Grooved Feed Extruder
- Reactive Extrusion
- Hydrolytic Depolymerization of Polyethylene Terephthalate by Reactive Extrusion
- Effect of Conversion on Chain Addition Copolymerizations Performed in a Backmixed Drag Flow Extruder Reactor
- Fiber and film
- Single and Double Bubble Tubular Film Extrusion of Polybutylene Terephthalate
- Molding
- Viscoplastic Material Modeling for the Stretch Blow Molding Simulation
- The Effects of Compression Pressure on Injection Compression Molding
- Numerical Simulation of Compression Molding of UHMWPE
- Numerical Simulation of Compression Molding of UHMWPE
- Mechanical Properties of Isotactic Polypropylene with Oriented and Cross-hatched Lamellae Structure
- Morphological Characterisation of Long Glass Fibre Composites for the Thermoforming Process
- PPS News
- PPS News
- Professional news
- New Petrochemical Complexes
Articles in the same Issue
- Contents
- Editorial
- Second of a Series: Pioneering Polymer Industry Developments—The IG Farbenindustrie and the Establishment of Synthetic Rubber
- Screw extrusion/mixing
- Analysis of Mixing in Corotating Twin Screw Extruders through Numerical Simulation
- Melt Conveying in Co-rotating Twin Screw Extruders
- The Adjustable Grooved Feed Extruder
- Reactive Extrusion
- Hydrolytic Depolymerization of Polyethylene Terephthalate by Reactive Extrusion
- Effect of Conversion on Chain Addition Copolymerizations Performed in a Backmixed Drag Flow Extruder Reactor
- Fiber and film
- Single and Double Bubble Tubular Film Extrusion of Polybutylene Terephthalate
- Molding
- Viscoplastic Material Modeling for the Stretch Blow Molding Simulation
- The Effects of Compression Pressure on Injection Compression Molding
- Numerical Simulation of Compression Molding of UHMWPE
- Numerical Simulation of Compression Molding of UHMWPE
- Mechanical Properties of Isotactic Polypropylene with Oriented and Cross-hatched Lamellae Structure
- Morphological Characterisation of Long Glass Fibre Composites for the Thermoforming Process
- PPS News
- PPS News
- Professional news
- New Petrochemical Complexes