Analysis of Mixing in Corotating Twin Screw Extruders through Numerical Simulation
-
T. Avalosse
Abstract
Mixing is a major ingredient in many industrial processes to obtain desired and uniform material properties. Nowadays, many materials, pigments, additives, gas or reactants, are mixed to create new products combining the characteristics of different raw materials to obtain specific product properties. The quality of the mixing, i.e. the uniformity of the mixture, is a key issue that will determine the morphology and the properties of the resulting compound [1, 2]. An insight in the physics of mixing is therefore necessary in order to achieve a good quality of mixing or maintain it when scaling equipment, for example.
Such information can now be obtained through the numerical simulation of the transient flow in extruder components. To improve greatly the ease of obtaining such information, a new technique introduced in a finite elements software is presented. This technique simplifies the meshing, reduces the meshes needed and eliminates complex remeshing algorithms to simulate flow in screws, pumps and mixing devices.
This technique is validated versus traditional simulation methods (i.e. conforming meshes). 3-D transient numerical simulations of two twin screw extruder configurations are then presented. A further quantitative comparison of their mixing behavior is developed as statistical information (of the RTD, deformations, dispersion, etc.) can be obtained to compare both configurations in a synthetic and quantitative way.
References
1 Cheng, J., Xie, Y., Bigio, D.: SPE Antec Tech. Papers 44, p. 60 (1998)Suche in Google Scholar
2 Manas-Zloczower, I., Tadmor, Z.: Mixing and Compounding of Polymers, Theory and Practice. Hanser Publishers, Munich, Vienna, New York (1994)Suche in Google Scholar
3 Bang, D.S., White, J.L.: Intern. Polym. Process. 12, p. 278 (1997)10.3139/217.970278Suche in Google Scholar
4 Vergnes, B., Della Valle, G., Delamare, L.: Polymer Engineering and Science, 11, p. 1781 (1998)10.1002/pen.10348Suche in Google Scholar
5 Potente, H., Flecke, J.: SPE Antec Tech. Papers 1, p. 110 (1997)Suche in Google Scholar
6 Yao, C.H., Manas-Zloczower, I.: Intern. Polym. Process. 12, p. 92 (1997)10.3139/217.970092Suche in Google Scholar
7 Wilson, M.P., Al-Malaika, S., Generalis, S. C., Bruce, D.P.: Proceedings of the Fifth World Congress of Chemical Engineers (San Diego), 4, p. 509 (1996)Suche in Google Scholar
8 Rios, A.C., Gramman, P.J., Stanfield, E., Osswald, T.A.: SPE Antec Tech. Papers 1, p. 222 (1998)Suche in Google Scholar
9 Avalosse, T.: Macromol. Symp. 112, p. 91 (1996)10.1002/masy.19961120114Suche in Google Scholar
10 Ottino, J.M.: The Kinematics of Mixing: Stretching, Chaos and Transport. University Press, Cambridge (1989)Suche in Google Scholar
11 POLYFLOW version 3.6 Users Manual, Chapter 26. Polyflow s.a., Louvain-la-Neuve, Belgium (1998)Suche in Google Scholar
12 Bertrand, F., Tanguy, P.A., Thibault, F.: Int. J. Num. Meth. Fluids 25, p. 719 (1997)10.1002/(SICI)1097-0363(19970930)25:6<719::AID-FLD585>3.0.CO;2-KSuche in Google Scholar
13 Avalosse, T., Crochet, M.J.: AIChE J. 43, p. 588 (1997)10.1002/aic.690430304Suche in Google Scholar
14 Fortin, M.: Int. J. Num. Meth. Fluids 1, p. 347 (1981)10.1002/fld.1650010406Suche in Google Scholar
15 Kiani, A., Heidenmeyer, P.: SPE Antec Tech. Paper 43, p. 328 (1997)Suche in Google Scholar
© 2000 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Editorial
- Second of a Series: Pioneering Polymer Industry Developments—The IG Farbenindustrie and the Establishment of Synthetic Rubber
- Screw extrusion/mixing
- Analysis of Mixing in Corotating Twin Screw Extruders through Numerical Simulation
- Melt Conveying in Co-rotating Twin Screw Extruders
- The Adjustable Grooved Feed Extruder
- Reactive Extrusion
- Hydrolytic Depolymerization of Polyethylene Terephthalate by Reactive Extrusion
- Effect of Conversion on Chain Addition Copolymerizations Performed in a Backmixed Drag Flow Extruder Reactor
- Fiber and film
- Single and Double Bubble Tubular Film Extrusion of Polybutylene Terephthalate
- Molding
- Viscoplastic Material Modeling for the Stretch Blow Molding Simulation
- The Effects of Compression Pressure on Injection Compression Molding
- Numerical Simulation of Compression Molding of UHMWPE
- Numerical Simulation of Compression Molding of UHMWPE
- Mechanical Properties of Isotactic Polypropylene with Oriented and Cross-hatched Lamellae Structure
- Morphological Characterisation of Long Glass Fibre Composites for the Thermoforming Process
- PPS News
- PPS News
- Professional news
- New Petrochemical Complexes
Artikel in diesem Heft
- Contents
- Editorial
- Second of a Series: Pioneering Polymer Industry Developments—The IG Farbenindustrie and the Establishment of Synthetic Rubber
- Screw extrusion/mixing
- Analysis of Mixing in Corotating Twin Screw Extruders through Numerical Simulation
- Melt Conveying in Co-rotating Twin Screw Extruders
- The Adjustable Grooved Feed Extruder
- Reactive Extrusion
- Hydrolytic Depolymerization of Polyethylene Terephthalate by Reactive Extrusion
- Effect of Conversion on Chain Addition Copolymerizations Performed in a Backmixed Drag Flow Extruder Reactor
- Fiber and film
- Single and Double Bubble Tubular Film Extrusion of Polybutylene Terephthalate
- Molding
- Viscoplastic Material Modeling for the Stretch Blow Molding Simulation
- The Effects of Compression Pressure on Injection Compression Molding
- Numerical Simulation of Compression Molding of UHMWPE
- Numerical Simulation of Compression Molding of UHMWPE
- Mechanical Properties of Isotactic Polypropylene with Oriented and Cross-hatched Lamellae Structure
- Morphological Characterisation of Long Glass Fibre Composites for the Thermoforming Process
- PPS News
- PPS News
- Professional news
- New Petrochemical Complexes