Startseite Technik Dynamical Behaviors of a Fractional-Order Predator–Prey Model with Holling Type IV Functional Response and Its Discretization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamical Behaviors of a Fractional-Order Predator–Prey Model with Holling Type IV Functional Response and Its Discretization

  • A. M. Yousef , S. Z. Rida , Y. Gh. Gouda und A. S. Zaki EMAIL logo
Veröffentlicht/Copyright: 26. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.

MSC 2010: 26A33; 34C23; 37D45

References

[1] A. A. Berryman, The origins and evolution of predator–prey theory, Ecology. 73 (1992), 1530–1535.10.2307/1940005Suche in Google Scholar

[2] A. M. A. El-Sayed, Fractional-order diffusion-wave equation, Int. J. Theor. Phys. 35 (1996), 311–322.10.1007/BF02083817Suche in Google Scholar

[3] A. E. M. El-Misiery, E. Ahmed, On a fractional model for earthquakes, Appl. Math. Comput. 178 (2006), 207–211.10.1016/j.amc.2005.10.011Suche in Google Scholar

[4] F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear. Sci. Numer. Simul. 15 (2010), 939–945.10.1016/j.cnsns.2009.05.004Suche in Google Scholar

[5] D. A. Benson, M. M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective, Adv. Water. Res. 51 (2013), 479–497.10.1016/j.advwatres.2012.04.005Suche in Google Scholar PubMed PubMed Central

[6] A. Sapora, P. Cornetti, A. Carpinteri, Wave propagation in nonlocal elastic continua modelled by a fractional calculus approach, Commun. Nonlinear. Sci. Numer. Simul. 18 (2013), 63–74.10.1016/j.cnsns.2012.06.017Suche in Google Scholar

[7] J. A. Tenreiro Machado, M. E. Mata, Pseudo phase plane and fractional calculus modeling of western global economic downturn, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), 396–406.10.1016/j.cnsns.2014.08.032Suche in Google Scholar

[8] M. P. Aghababa, H. P. Aghababa, The rich dynamics of fractional-order gyros applying a fractional controller. Proc IMechE Part I, J. Syst. Control Eng. 227 (2013), 588–601.10.1177/0959651813492326Suche in Google Scholar

[9] M. P. Aghababa, Fractional modeling and control of a complex nonlinear energy supply-demand system, Complexity 20 (2015), 74–86.10.1002/cplx.21533Suche in Google Scholar

[10] M. P. Aghababa, M. Borjkhani, Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme, Complexity 20 (2014), 37–46.10.1002/cplx.21502Suche in Google Scholar

[11] E. Ahmed, A. S. Elgazzar, On fractional order differential equations model for nonlocal epidemics, Phys A. 379 (2007), 607–614.10.1016/j.physa.2007.01.010Suche in Google Scholar

[12] R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dyn. 14 (1991), 304–311.10.2514/3.20641Suche in Google Scholar

[13] H. H. Sun, A. A. Abdelwahab, B. Onaral, Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control. 29 (1984), 441–44410.1109/TAC.1984.1103551Suche in Google Scholar

[14] M. Ichise, Y. Nagayanagi, T. Kojima, An analog simulation of noninteger order transfer functions for analysis of electrode process, J. Electroanal. Chem. 33 (1971), 253–265.10.1016/S0022-0728(71)80115-8Suche in Google Scholar

[15] A. M. Yousef, S. M. Salman, Backward Bifurcation in a Fractional-Order SIRS Epidemic Model with a Nonlinear Incidence Rate, IJNSNS 17 (2016), 343–420.10.1515/ijnsns-2016-0036Suche in Google Scholar

[16] S. M. Salman, A. M. Yousef, On a fractional-order model for HBV infection with cure of infected cells, J. Egypt. Math. Soc. 25 (2017), 445–451.10.1016/j.joems.2017.06.003Suche in Google Scholar

[17] A. M. A. El-Sayed, A. E. M. El-Mesiry, H. A. A. El-Saka, On the fractional-order logistic equation. Appl. Math. Lett. 20 (2007), 817–823.10.1016/j.aml.2006.08.013Suche in Google Scholar

[18] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models, J. Math. Anal. Appl. 325 (2007), 542–553.10.1016/j.jmaa.2006.01.087Suche in Google Scholar

[19] O. Heaviside, Electromagnetic Theory, Chelsea, New York, 1971.Suche in Google Scholar

[20] D. Kusnezov, A. Bulgac, G. D. Dang, Quantum levy processes and fractional kinetics, Phys. Rev. Lett. 82 (1999), 1136–1139.10.1103/PhysRevLett.82.1136Suche in Google Scholar

[21] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys. J. R. Astron. Soc. 13 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[22] F. Ben Adda, Geometric interpretation of the fractional derivative. J. Fract. Calc. 11 (1997), 21–52.Suche in Google Scholar

[23] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002), 367–386.Suche in Google Scholar

[24] E. N. Lorenz, Deterministic non-periodic flows, J. Atmos. Sci. 20 (1963), 130–141.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2Suche in Google Scholar

[25] D. Jana, Chaotic dynamics of a discrete predator-prey system with prey refuge, Appl. Math. Comput. 224 (2013), 848–865.10.1016/j.amc.2013.09.001Suche in Google Scholar

[26] H. N. Agiza, A. E. Matouk, Adaptive synchronization of Chua’s circuits with fully unknown parameters, Chaos Soliton Fractals 28 (2006), 219–227.10.1016/j.chaos.2005.05.055Suche in Google Scholar

[27] A. E. Matouk, Dynamical analysis, feedback control and synchronization of Liu dynamical system, Nonlinear Anal. Theory Methods Appl. 69 (2008), 3213–3224.10.1016/j.na.2007.09.029Suche in Google Scholar

[28] A. E. Matouk, H. N. Agiza, Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J. Math. Anal. Appl. 341 (2008), 259–269.10.1016/j.jmaa.2007.09.067Suche in Google Scholar

[29] H. N. Agiza, E. M. Elabbasy, H. EL-Metwally, A. A. Elsadany, Chaotic dynamics of a discrete prey-predator model with Holling type II, Nonlinear Anal. Real World Appl. 10 (2009), 116–119.10.1016/j.nonrwa.2007.08.029Suche in Google Scholar

[30] E. M. Elabbasy, H. N. Agiza, H. A. El-Metwally, A. A. Elsadany, Bifurcation analysis, chaos and control in the Burgers mapping, Int. J. Nonlinear Sci. 4 (2007), 171–185.Suche in Google Scholar

[31] A. A. Elsadany, H. A. El-Metwally, E. M. Elabbasy, H. N. Agzia, Chaos and bifurcation of a nonlinear discrete prey-predator system, Comput. Ecol. Softw. 2 (2012), 169–180.Suche in Google Scholar

[32] A. A. Elsadany, Competition analysis of a triopoly game with bounded rationality, Chaos Solitons Fractals. 45 (2012), 1343–1348.10.1016/j.chaos.2012.07.003Suche in Google Scholar

[33] A. S. Hegazi, A. E. Matouk, Chaos synchronization of the modified autonomous Van der Pol-Duffing circuits via active control, Appl. Chaos Nonlinear Dynam. Sci. Eng. 3 (2013), 185–202.10.1007/978-3-642-34017-8_7Suche in Google Scholar

[34] E. M. Elabbasy, A. A. Elsadany, Y. Zhang, Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput. 228 (2014), 184–194.10.1016/j.amc.2013.11.088Suche in Google Scholar

[35] A. A. Elsadany, A. E. Matouk, Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization, Appl. Math. Comput. 49 (2015), 269–283.10.1007/s12190-014-0838-6Suche in Google Scholar

[36] A. E. Matouk, A. A. Elsadany, E. Ahmed, H. N. Agiza, Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization, Commun. Nonlinear Sci. Numer. Simul. 27 (2015), 153–167.10.1016/j.cnsns.2015.03.004Suche in Google Scholar

[37] A. E. Matouk, A. A. Elsadany, Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model, Nonlin. Dynam. 85 (2016), 1597–1612.10.1007/s11071-016-2781-6Suche in Google Scholar

[38] A. S. Hegazi, A. E. Matouk, Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system, Appl. Math. Lett. 24 (2011), 1938–1944.10.1016/j.aml.2011.05.025Suche in Google Scholar

[39] A. S. Hegazi, E. Ahmed, A. E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 1193–1202.10.1016/j.cnsns.2012.09.026Suche in Google Scholar

[40] A. E. Matouk, A. A. Elsadany, Achieving synchronization between the fractional-order hyperchaotic Novel and Chen systems via a new nonlinear control technique, Appl. Math. Lett. 29 (2014), 30–35.10.1016/j.aml.2013.10.010Suche in Google Scholar

[41] A. Elsaid, D. F. M. Torres, S. Bhalekar, A. Elsadany, A. Elsonbaty, Hyperchaotic fractional-Order Systems and Their Applications, Complexity. 2017 (2017), 1 page.10.1155/2017/7476090Suche in Google Scholar

[42] A. M. A. El-Sayed, A. Elsonbaty, A. A. Elsadany, A. E. Matouk, Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization, Int. J. Bifurcation Chaos. 26 (2016), 35pages.10.1142/S0218127416502229Suche in Google Scholar

[43] A. J. Lotka, Elements of Physical Biology. Williams and Wilkins, Baltimore, 1925.Suche in Google Scholar

[44] V. Volterra, Variazioni e fluttuazioni del numero di individui in specie animali conviventi. Mem. Acad. Lincei. 2 (1926), 31–113.Suche in Google Scholar

[45] C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can. 45 (1965), 1–60.10.4039/entm9745fvSuche in Google Scholar

[46] H. I. Freedman, Deterministic mathematical models in population ecology. Marcel Dekker, New York, 1980.Suche in Google Scholar

[47] W. Sokol, J. A. Howell, kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng. 23 (1980), 2039–2049.10.1002/bit.260230909Suche in Google Scholar

[48] A. M. A. El-Sayed, S. M. Salman, On a discretization process of fractional order Riccatis differential equation, J. Fract. Calc. Appl. 4 (2013), 251–259.Suche in Google Scholar

[49] Z. F. El-Raheem, S. M. Salman, On a discretization process of fractional-order logistic differential equation. J. Egypt. Math. Soc. 22 (2014), 407–412.10.1016/j.joems.2013.09.001Suche in Google Scholar

[50] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl. 2 (1996), 963.Suche in Google Scholar

[51] X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals. 32 (2007), 80–94.10.1016/j.chaos.2005.10.081Suche in Google Scholar

[52] S. Elaydi, Discrete Chaos, second edition: with applications in science and engineering, Chapman and Hall/CRC, Boca Raton, 2008.Suche in Google Scholar

Received: 2017-07-09
Accepted: 2019-12-01
Published Online: 2019-01-26
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0152/pdf
Button zum nach oben scrollen