Startseite Technik Unit Root Testing in the Presence of Mean Reverting Jumps: Evidence from US T-Bond Yields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unit Root Testing in the Presence of Mean Reverting Jumps: Evidence from US T-Bond Yields

  • Deniz Ilalan ORCID logo EMAIL logo und Özgür Özel
Veröffentlicht/Copyright: 26. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mean reversion of financial data, especially interest rates is often tested by linear unit root tests. However, there are times where linear unit root test results can be misleading especially when mean reverting jump formations are at stage. Considering this framework, we provide a new unit root testing methodology and compute its asymptotic critical values via Monte Carlo simulation. Moreover, we numerically compare the power of this generalized mean reversion test with the pioneering linear unit root test in the literature namely the Augmented Dickey Fuller (ADF) test. We deduce that our test is a refinement of ADF test with a higher power. We apply our findings to US 10-year Treasury bond yields. We aim to shed light to the discussion among researchers whether interest rates can sometimes revert to a long-term constant mean or not from an unorthodox point of view.

JEL Classification: C15; C22; G17

References

[1] P. Clark, Trend Reversion in Real Output and Unemployment, J. Econom. 40 (1989), 15–32.10.1016/0304-4076(89)90027-4Suche in Google Scholar

[2] H. Y. Lee and J. L. Wu, Mean Reversion of Inflation Rates: Evidence from 13 OECD Countries, J. Macroecon. 23 (3) (2001), 477–487.10.1016/S0164-0704(01)00174-4Suche in Google Scholar

[3] Y. W. Cheung and K. S. Lai, Mean reversion in real exchange rates, Econ. Lett. 46 (1994), 251–256.10.1016/0165-1765(94)00486-2Suche in Google Scholar

[4] L. A. Gil-Alana, Mean reversion in the real exchange rates, Econ. Lett. 69 (2000), 285–288.10.1016/S0165-1765(00)00318-9Suche in Google Scholar

[5] T. G. Bali, K. O. Demirtas and H. Levy, Nonlinear mean reversion in stock prices, J. Banking. Finance. 32 (2008), 767–782.10.1016/j.jbankfin.2007.05.013Suche in Google Scholar

[6] J. Wang, D. Zhang and J. Zhang, Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions, Int. Rev. Econ. Finance. 37 (2015), 157–164.10.1016/j.iref.2014.11.020Suche in Google Scholar

[7] L. Spierdijk, J. A. Bikker and P. Hoekd, Mean reversion in international stock markets: An empirical analysis of the 20th century, J. Int. Money Finance. 31 (2) (2012), 228–249.10.1016/j.jimonfin.2011.11.008Suche in Google Scholar

[8] D. A. Dickey and W. A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc. 74 (366) (1979), 427–431.10.1080/01621459.1979.10482531Suche in Google Scholar

[9] A. Krishnamurthy and A. Vissing-Jorgensen 2011. The Effects of Quantitative Easing on Interest Rates: Channels and Implications for Policy NBER Working Paper No. 17555.10.3386/w17555Suche in Google Scholar

[10] P. Mishra, K. Moriyama and P. N’Diaye 2014. Impact of Fed Tapering Announcements on Emerging Markets IMF Working Paper No. 14/109.10.5089/9781498361484.001Suche in Google Scholar

[11] Y. Honda and Y. Kuroki, Financial and Capital Markets Responses to Changes in the Central Bank’s Target Interest Rate: The Case of Japan, Econ. J. 116 (513) (2006), 812–842.10.1111/j.1468-0297.2006.01113.xSuche in Google Scholar

[12] L. Ball, J. Gagnon, P. Honohan and S. Krogstrup 2016. What Else Can Central Banks Do? Geneva Reports on the World Economy 18, International Center for Monetary and Banking Studies.Suche in Google Scholar

[13] O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ. 5 (1977), 177–188.10.1016/0304-405X(77)90016-2Suche in Google Scholar

[14] A. Hayfavi and I. Talaslı, Stochastic multifactor modeling of spot electricity prices, J. Comput. Appl. Math. 259 (2013), 434–442.10.1016/j.cam.2013.10.008Suche in Google Scholar

[15] A. Cartea and M. G. Figueroa, Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality, Appl. Math. Finance. 12 (4) (2005), 313–335.10.1080/13504860500117503Suche in Google Scholar

[16] M. Kjaer, Pricing of Swing Options in a Mean Reverting Model with Jumps, Appl. Math. Finance. 15 (5-6) (2008), 479–502.10.1080/13504860802170556Suche in Google Scholar

[17] D. W. C. Miao, X. C. S. Lin and W. L. Chao, Option pricing under jump-diffusion models with mean-reverting bivariate jumps, Oper. Res. Let. 42 (2014), 27–33.10.1016/j.orl.2013.11.004Suche in Google Scholar

[18] S. R. Das, The surprise element: jumps in interest rates, J. Econom. 106 (2002), 27–65.10.1016/S0304-4076(01)00085-9Suche in Google Scholar

[19] M. Johannes, The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models, J. Finance. 59 (1) (2004), 227–260.10.1111/j.1540-6321.2004.00632.xSuche in Google Scholar

[20] J. Kim and J. Y. Park 2013. Mean reversion and unit root properties of diffusion models: Working paper, Indiana University.Suche in Google Scholar

[21] K. Patterson, A Primer for Unit Root Testing, UK, Palgrave Macmillan, 2010.10.1057/9780230248458Suche in Google Scholar

[22] S. Lundbergh, T. Teräsvirta and D. Van Dijk, Time Varying Smooth Transition Autoregressive Models, J. Bus. Econ. Stat. 21 (2003), 104–121.10.1198/073500102288618810Suche in Google Scholar

[23] G. Kapetanios, Y. Shin and A. Snell, Testing for a Unit Root in the Nonlinear STAR Framework, J. Econom. 112 (2003), 359–379.10.1016/S0304-4076(02)00202-6Suche in Google Scholar

[24] R. Sollis, Asymmetric Adjustment and Smooth Transitions: A Combination of Some Unit Root Tests, J. Time Ser. Anal. 25 (2014), 409–417.10.1111/j.1467-9892.2004.01911.xSuche in Google Scholar

[25] G. C. Chow, Tests of Equality between Sets of Coefficients in Two Linear Regressions, Econometrica. 28 (3) (1960), 591–605.10.2307/1910133Suche in Google Scholar

[26] O. E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. 63 (2) (2001), 167–241.10.1111/1467-9868.00282Suche in Google Scholar

[27] P. C. Phillips and P. Perron, Testing for a unit root in time series regression, Biometrika. 75 (2) (1988), 335–346.10.1093/biomet/75.2.335Suche in Google Scholar

[28] L. Ornstein and G. Uhlenbeck, On the Theory of the Brownian motion, Phys. Rev. 36 (1930), 823–841.10.1103/PhysRev.36.823Suche in Google Scholar

[29] A. Szimayer and R. Maller, Testing for Mean Reversion in Processes of Ornstein Uhlenbeck Type, Stat. Inference Stochastic Processes. 7 (2004), 95–113.10.1023/B:SISP.0000026032.80363.59Suche in Google Scholar

[30] P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, Germany, 1990.10.1007/978-3-662-02619-9Suche in Google Scholar

[31] R. Cont and P. Tankov 2003. Financial Modeling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series.Suche in Google Scholar

[32] J. D. Hamilton, Time Series Analysis, Princeton University Press, USA, 1994.10.1515/9780691218632Suche in Google Scholar

[33] Ö. Özel and D. Ilalan, An alternative mean reversion test for interest rates, Cent. Bank Rev. 18 (1) (2018), 35–39.10.1016/j.cbrev.2017.12.001Suche in Google Scholar

[34] R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ. 3 (1976), 125–144.10.1016/0304-405X(76)90022-2Suche in Google Scholar

[35] A. Buse, The likelihood ratio, Wald and Lagrange multiplier tests: An expository note. The American Statistician 36 (3) (1982), 153–157.10.1080/00031305.1982.10482817Suche in Google Scholar

Received: 2018-01-15
Accepted: 2018-12-28
Published Online: 2019-01-26
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0012/html
Button zum nach oben scrollen