Startseite Technik Dynamic Analysis of a Composite Structure under Random Excitation Based on the Spectral Element Method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dynamic Analysis of a Composite Structure under Random Excitation Based on the Spectral Element Method

  • M. R. Machado ORCID logo EMAIL logo , L. Khalij und A. T. Fabro
Veröffentlicht/Copyright: 24. Januar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The application of the composite materials in the aeronautical and aerospace industries has been increasing over the last several decades. Compared to conventional metallic materials, they present better strength to weight and stiffness to weight ratio. However, they can also present a high level of uncertainty, mainly associated with the manufacturing processes. Besides the uncertainty in the composite material parameters, which can play a role in the structural dynamic response, randomness can also be associated with boundary condition and external excitation sources. This paper treats the dynamic analysis of a composite beam under random excitation and uncertainties in the boundary condition. The beam is modelled by the spectral element method, a wave propagation technique. Some numerical examples are used to study the influence of random source on the dynamic behaviour of the composite structure.

References

[1] A. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes, McGraw-Hill, Boston, 2002.Suche in Google Scholar

[2] J. Li and J. Chen, Structural dynamics and probabilistic analyses for engineers, John Wiley & Sons, 2009.Suche in Google Scholar

[3] G. Maymon, Stochastic dynamics of structures, Butterworth-Heinemann, Oxford, 2008.Suche in Google Scholar

[4] D. E. Newland, An introduction to random vibrations, spectral & wavelet analysis, Dover Publications, New York, 2005.Suche in Google Scholar

[5] J. F. Doyle, A spectrally formulated finite elements for longitudinal wave propagation, J. Anal. Exp. Modal Anal. 3 (1988), 1–5.10.1111/j.1747-1567.1988.tb02091.xSuche in Google Scholar

[6] J. F. Doyle, Wave propagation in structures : spectral analysis using fast discrete Fourier transforms, second ed. Mechanical engineering. Springer-Verlag New York, Inc., New York, 1997.10.1007/978-1-4612-1832-6Suche in Google Scholar

[7] U. Lee, Spectral element method in structural dynamics, Inha University Press, 2004.Suche in Google Scholar

[8] U. Lee and J. Kim, Determination of nonideal beam boundary conditions: a spectral element approach, AIAA J. 38 (2000), 309–316. doi.org/10.2514/2.958.10.2514/2.958Suche in Google Scholar

[9] J. F. Doyle, Wave propagation in structures, Springer Verlag, New York, 1989.10.1007/978-1-4684-0344-2Suche in Google Scholar

[10] J. Choi and D. Inman, Spectrally formulated modeling of a cable-harnessed structure, J. Sound Vibr. 333(14) (2014), 3286–3304.10.1016/j.jsv.2014.03.020Suche in Google Scholar

[11] X. Liu and J. R. Banerjee, A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems, Mech. Syst. Sig. Process. 87 (2017), 136–160.10.1016/j.ymssp.2016.10.017Suche in Google Scholar

[12] A. Pagani, E. Carrera, M. Boscolo and J. R. Banerjee, Refined dynamic stiffness elements applied to free vibration analysis of generally laminated composite beams with arbitrary boundary conditions, Compos. Struct. 110 (2014), 305–316.10.1016/j.compstruct.2013.12.010Suche in Google Scholar

[13] S. Gopalakrishnan, Wave propagation in materials and structures, CRC Press Taylor & Francis Group, New York, 2016.10.1201/9781315372099Suche in Google Scholar

[14] S. Gopalakrishnan, A. Chakraborty and D. R. Mahapatra, Spectral finite element method, Springer Verlag, New York, 2007.Suche in Google Scholar

[15] M. Palacz, M. Krawczuk and W. Ostachowicz, The spectral finite element model for analysis of flexural-shear coupled wave propagation. part 1 laminated multilayer composite beam, Comput. Struct. 68 (2005), 37–44.10.1016/j.compstruct.2004.02.012Suche in Google Scholar

[16] S. R. SA and J. Doyle, A spectral element approach to wave motion in layered solids, J. Vibr. Acoust. 114 (1992), 569–577.10.1115/1.2930300Suche in Google Scholar

[17] U. Lee, Dynamic characterization of the joints in a beam structure by using spectral element method, Shock Vibr. 8(6) (2000), 357–366.10.1155/2001/254020Suche in Google Scholar

[18] M. R. Machado, A. Appert and L. Khalij, Dynamic analysis of a fatigue specimen subjected to a random base excitation via spectral element method, in: Proceedings of the joint ICVRAM ISUMA uncertainties conference, 2018.Suche in Google Scholar

[19] J. N. Kapur and H. K. Kesavan, Entropy optimization principles with applications, Academic Press, Boston, 1992.10.1007/978-94-011-2430-0_1Suche in Google Scholar

[20] C. Soize, Random matrix theory and non-parametric model of random uncertainties in vibration analysis, J. Sound Vibr. 263 (2003), 893–916.10.1016/S0022-460X(02)01170-7Suche in Google Scholar

[21] C. Soize, Uncertainty quantification – an accelerated course with advanced applications in computational engineering, 1st ed. Interdisciplinary Applied Mathematics. Elsevier, 2017.10.1007/978-3-319-54339-0Suche in Google Scholar

[22] R. Calfisch, Monte Carlo and quasi mone carlo methods, Acta Numer. 1 (1998), 2–49.10.1017/S0962492900002804Suche in Google Scholar

[23] H. Pradlwarter and G. Schuüller, On advanced Monte Carlo simulation procedures in stochastic structural dynamics, Int. J. Non-Linear Mech. (Third International Stochastic Structural Dynamics Conference) 32(4) (1997), 735–744.10.1016/S0020-7462(96)00091-1Suche in Google Scholar

[24] R. Rubinstein and D. Kroese, Simulation and the Monte Carlo method, John Wiley & Sons, USA, 2008.10.1002/9780470230381Suche in Google Scholar

[25] I. M. Sobol’, A primer for the Monte Carlo method, CRC-Press Taylor & Francis Group, Florida, 1994.Suche in Google Scholar

[26] D. Gay, Materials design and applications, CRC-Press Taylor & Francis Group, Florida, 2015.Suche in Google Scholar

[27] J. N. Reddy, Mechanics of laminated composite plates and shells - theory and analysis, Second Edition, CRC-Press Taylor & Francis Group, Florida, 2003.10.1201/b12409Suche in Google Scholar

[28] M. Palacz, M. Krawczuk and W. Ostachowicz, The spectral finite element model for analysis of flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam, Compos. Struct. 68 (2005), 45–51.10.1016/j.compstruct.2004.02.013Suche in Google Scholar

[29] E. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (4) (1957), 1620–1630.10.1103/PhysRev.106.620Suche in Google Scholar

[30] E. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108 (1957), 171–190.10.1103/PhysRev.108.171Suche in Google Scholar

[31] C. E. Shannon, A mathematical theory of communication, Bell Syst Tech. J. 27 (1948), 379–423 and 623–659.10.1002/j.1538-7305.1948.tb01338.xSuche in Google Scholar

[32] J. N. Kapur and H. K. Kesavan, Entropy optimization principles with applications, Academic Press, Inc., USA, 1992.10.1007/978-94-011-2430-0_1Suche in Google Scholar

Received: 2018-03-01
Accepted: 2018-12-16
Published Online: 2019-01-24
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0050/html
Button zum nach oben scrollen