Home Technology Effect of Fractional Damping in Double-Well Duffing–Vander Pol Oscillator Driven by Different Sinusoidal Forces
Article
Licensed
Unlicensed Requires Authentication

Effect of Fractional Damping in Double-Well Duffing–Vander Pol Oscillator Driven by Different Sinusoidal Forces

  • M. V. Sethu Meenakshi , S. Athisayanathan , V. Chinnathambi EMAIL logo and S. Rajasekar
Published/Copyright: January 29, 2019

Abstract

The effect of nonlinear damping including fractional damping on the onset of horseshoe chaos is studied both analytically and numerically in the double-well Duffing–Vander Pol (DVP) oscillator driven by various sinusoidal forces. The sinusoidal type periodic forces of our interest are sine wave, rectified sine wave, and modulus of sine wave. Using the Melnikov analytical method, the threshold condition for the onset of horseshoe chaos is obtained for each sinusoidal force. Melnikov threshold curves are drawn in (f,\;ω) parameters space for each force. When the damping component (p) increases from a small value, the Melnikov threshold value (fM) is decreased for each force. Suppression of horseshoe chaos is predicted due to the effect of weak periodic perturbation and nonlinear fractional damping. Analytical predictions are demonstrated through direct numerical simulations.

Acknowledgements

The authors would like to thank two anonymous referees for valuable suggestions which helped to improve the presentation of this paper.

References

[1] S. J. Elliot, M. G. Tehrani and R. S. Langley, Nonlinear damping and quasi-linear modelling, Phil. Trans. R. Soc. A 373 (2015), 20140402.10.1098/rsta.2014.0402Search in Google Scholar

[2] B. Ravindra and A. K. Mallik, Stability analysis of a nonlinearly damped Duffing oscillator, J. Sound. Vib. 171 (1994), 708–716.10.1006/jsvi.1994.1153Search in Google Scholar

[3] B. Ravindra and A. K. Mallik, Role of nonlinear dissipation in soft Duffing oscillators, Phys. Rev. E. 49 (1994), 4950–4954.10.1103/PhysRevE.49.4950Search in Google Scholar

[4] A. Sharma, V. Patidar, G. Purokit and K. K. Sud, Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping, Commun. in Nonlinear Sci. Numeri. Simulat. 176 (2012), 2254–2269.10.1016/j.cnsns.2011.10.032Search in Google Scholar

[5] M. S. Soliman and J. M. T. Thompson, The effect of damping on the steady state and basin bifurcation patterns of a nonlinear mechanical oscillator, Int. J. Bifur. Chaos. 2 (1992), 81–91.10.1142/S0218127492000082Search in Google Scholar

[6] J. P. Baltanas, J. L. Trueba and M. A. F. Sanjuan, Energy dissipation in a nonlinearly damped Duffing oscillators, Physica D. 159 (2001), 22–34.10.1016/S0167-2789(01)00329-3Search in Google Scholar

[7] J. Padovan and J. T. Sawicki, Nonlinear vibration of fractional damped systems, Nonlinear Dyn. 16 (1198), 321–336.10.1023/A:1008289024058Search in Google Scholar

[8] R. E. Mickons, Fractional Vander Pol equations, J. Sound. Vib. 259 (2003), 457–460.10.1006/jsvi.2002.5170Search in Google Scholar

[9] R. E. Mickens, K. O. Oyedeji and S. A. Rucker, Analysis of the simple harmonic oscillator with fractional damping, J. Sound Vib. 268 (2003), 839–842.10.1016/S0022-460X(03)00371-7Search in Google Scholar

[10] Z. M. Ge and C. Y. Ou, Chaos in a fractional order modified Duffing system, Chaos, Solitons & Fractals. 34 (2007), 262–291.10.1016/j.chaos.2005.11.059Search in Google Scholar

[11] K. Konishi, Generating chaotic behaviours in an oscillator driven by periodic forces, Phys. Lett. A 320 (2003), 200–206.10.1016/j.physleta.2003.11.024Search in Google Scholar

[12] Z. M. Ze and W. Y. Leu, Anticontrol of chaos of two degrees of freedom loud speaker system and synchronization of different order systems, Chaos, Solitons & Fractals. 20 (2004), 503–521.10.1016/j.chaos.2003.07.001Search in Google Scholar

[13] Y. C. Lai, Z. Liu, A. Nachman and L. Zhu, Suppression of jamming inexcitable systems by aperiodic stochastic resonance, Int. J. Bifur. Chaos. 14 (2004), 3519–3539.10.1142/S0218127404011454Search in Google Scholar

[14] R. Chacon, Control of Homoclinic chaos by weak periodic perturbations, World Scientific, Singapore, 2005.10.1142/5001Search in Google Scholar

[15] V. Ravichandran, V. Chinnathambi and S. Rajasekar, Effect of rectified and modulated sine forces on chaos in Duffing oscillator, Indian J. Phys. 83 (11) (2009), 1593–1603.10.1007/s12648-009-0143-7Search in Google Scholar

[16] J. Guckenheimar and P. Holmes, The nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, New York, 1983.10.1007/978-1-4612-1140-2Search in Google Scholar

[17] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New York, 1990.10.1007/978-1-4757-4067-7Search in Google Scholar

[18] J. L. Trueba, J. Rams and M. A. F. Sanjuan, Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators, Int. J. Bifur. Chaos. 109 (2000), 2257–2267.10.1142/S0218127400001419Search in Google Scholar

[19] M. Borowice, G. Litak and A. Syta, Vibration of the Duffing oscillator; Effect of fractional damping, Shock Vib. 14 (2007), 29–36.10.1155/2007/276515Search in Google Scholar

[20] L. J. Sheu, H. K. Chen, J. H. Chen and L. M. Tam, Chaotic dynamics of the fractionally damped Duffing equation, Chaos, Solitons Fractals. 31 (2007), 1203–1212.10.1016/j.chaos.2005.11.066Search in Google Scholar

[21] M. A. F. Sanjuan, The effect of nonlinear damping on the universal escape oscillator, Int. J. Bifur. & Chaos. 9 (1999), 735–744.10.1142/S0218127499000523Search in Google Scholar

[22] D. G. Silva and P. S. Varoto, Effects of variations in nonlinear damping coefficients in the parametric vibration of a cantilever beam with a lumped mass, Hindawi Publishing Corporation, Mathematical Problems in Engineering, Vol. 2008, Article ID 185351, 19 pages, doi:10.1155/2008/185351.Search in Google Scholar

[23] Q. Liu, Y. Xu, C. Xu and J. Kurths, The sliding mode control for an airfoil system driven by harmonic and colored Gaussian noise excitations, Appl. Math. Modell. 64. doi:10.1016/j.apm.2018.07.032.Search in Google Scholar

[24] Y. Xu, Y. Li and W. Jia, Response of Duffing oscillator with fractional damping and random phase, Nonlinear Dyn. 74 (2013), 745–753.10.1007/s11071-013-1002-9Search in Google Scholar

[25] A. Li, Li. Ma, D. Keene, J. Klingel, M. Payene and X.J. Wang, Forced oscillations with linear and nonlinear damping, Am. J. Phys. 84 (2016), 32–40.10.1119/1.4935358Search in Google Scholar

[26] Y. Xu, R. Gu, H. Zhang and D. Li, Chaos in diffusionless Lorenz system with a fractional order and its control, Int. J. Bifur. & Chaos. 22 (14) (2012), 1250087.10.1142/S0218127412500885Search in Google Scholar

[27] Q. Liu, Y. Xu and J. Kurths, Active vibration suppression of a novel airfoil model with fractional order viscoelastic constitutive relationaship, J. Sound Vib. 432 (2018), 50–64.10.1016/j.jsv.2018.06.022Search in Google Scholar

[28] Y. Xu, H. Wang, Di. Liu and H. Huang, Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbation, J. Vib. Control. 21 (3) (2015), 435–448.10.1177/1077546313486283Search in Google Scholar

[29] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D. 16 (1985), 285–317.10.1016/0167-2789(85)90011-9Search in Google Scholar

Received: 2016-11-10
Accepted: 2019-01-12
Published Online: 2019-01-29
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0165/html
Scroll to top button